引用本文: | 郑小操,龚文引.改进人工蜂群算法求解模糊柔性作业车间调度问题[J].控制理论与应用,2020,37(6):1284~1292.[点击复制] |
ZHENG Xiao-cao,GONG Wen-yin.An improved artificial bee colony algorithm for fuzzy flexible job-shop scheduling problem[J].Control Theory and Technology,2020,37(6):1284~1292.[点击复制] |
|
改进人工蜂群算法求解模糊柔性作业车间调度问题 |
An improved artificial bee colony algorithm for fuzzy flexible job-shop scheduling problem |
摘要点击 2543 全文点击 1041 投稿时间:2019-07-10 修订日期:2019-09-29 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90544 |
2020,37(6):1284-1292 |
中文关键词 车间调度 人工蜂群算法 混沌理论 局部搜索 左移策略 |
英文关键词 job shop scheduling artificial bee colony algorithm chaos theory local search left-shift strategy |
基金项目 国家自然科学基金项目(61573324, 61873328)资助. |
|
中文摘要 |
模糊柔性作业车间调度问题(FFJSP)是柔性作业车间调度问题(FJSP)的拓展, 具有很强的现实意义. 针对
FFJSP, 本文提出了一种基于领域搜索的改进人工蜂群算法. 该算法以最小化最大模糊完工时间为目标. 首先, 为了
提高初始种群的多样性, 引入混沌理论来初始化种群. 其次, 为了提高算法的局部搜索能力, 采用4种邻域结构对蜜
源进行邻域搜索. 为了进一步优化蜜源和加快种群的收敛速度, 采用了一种新颖的交叉操作. 并且在解码的过程中
采用左移策略, 从而很好地利用机器的空闲时间. 最后, 选取了3组通用数据集来测试算法的性能, 并与代表性算法
进行比较. 结果表明, 对于大部分实例, 本文所提出的的算法的结果要优于与之对比的算法. |
英文摘要 |
Fuzzy flexible job-shop scheduling problem (FFJSP) is an extension of flexible job-shop scheduling problem
(FJSP), it has a strong practical significance. In this paper, an improved artificial bee colony algorithm based on neighborhood
search is proposed to solve FFJSP. The objective is to minimize maximum fuzzy completion time. Firstly, chaos
theory is used to initialize the population, which ensure the diversity of the initial population. In addition, In order to
improve the local search ability of the algorithm, four neighborhood structures are adopted and a novel crossover operation
is used to further optimize nectar source and accelerate the population convergence rate. The left-shift strategy is adopted
during the decoding process, which can make good use of the idle time of the machine, so as to reduce the maximum
fuzzy completion time. Finally, three sets of general data sets are selected to test the performance of the algorithm and
compared with the representative algorithms. The results show that for most cases, the proposed algorithm is better than
the comparison algorithms. |
|
|
|
|
|