引用本文: | 程代展,刘泽群.有限博弈的矩阵半张量积方法[J].控制理论与应用,2019,36(11):1812~1819.[点击复制] |
CHENG Dai-Zhan,LIU Ze-qun.Application of semi-tensor product of matrices to finite games[J].Control Theory and Technology,2019,36(11):1812~1819.[点击复制] |
|
有限博弈的矩阵半张量积方法 |
Application of semi-tensor product of matrices to finite games |
摘要点击 2524 全文点击 1131 投稿时间:2019-07-21 修订日期:2019-12-09 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90595 |
2019,36(11):1812-1819 |
中文关键词 矩阵半张量积, 有限博弈, 演化博弈, 势博弈, Shapley 值. |
英文关键词 Semi-tensor product of matrices, finite game, evolutionary game, potential game, Shapley value. |
基金项目 国家自然科学基金 |
|
中文摘要 |
矩阵半张量积被广泛地应用在有限博弈的研究中, 例如: (1) 演化博弈; (2) 势博弈; (3) 有限博弈的向量空间分解; (4) 基于势博弈的优化与控制; (5) 合作博弈等. 本文的目的, 就是对上述各种应用做一个全面的介绍, 包括其原理、主要成果、以及尚待解决的问题. |
英文摘要 |
Semi-tensor product of matrices has various applications for finite games, including (1) evolutionary game; (2) potential game; (3) vector space structure and decomposition of finite games; (4) potential-based optimization and control; (5) cooperative game, etc. The purpose of this paper is to provide a comprehensive introduction for the applications of semi-tensor product to finite games, including its principle, main results, and some faced challenging problems. |
|
|
|
|
|