引用本文: | 陈辉,李国财,韩崇昭,杜金瑞.高斯过程回归模型多扩展目标多伯努利滤波器[J].控制理论与应用,2020,37(9):1931~1943.[点击复制] |
CHEN Hui,LI Guo-cai,HAN Chong-zhao,DU Jin-rui.A multiple extended target multi-Bernouli filter based on Gaussian process regression model[J].Control Theory and Technology,2020,37(9):1931~1943.[点击复制] |
|
高斯过程回归模型多扩展目标多伯努利滤波器 |
A multiple extended target multi-Bernouli filter based on Gaussian process regression model |
摘要点击 2043 全文点击 656 投稿时间:2019-11-27 修订日期:2020-03-16 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.90978 |
2020,37(9):1931-1943 |
中文关键词 多扩展目标跟踪 随机超曲面 高斯过程回归 随机有限集 多伯努利滤波器 |
英文关键词 multiple extended target tracking random hypersurface Gaussian process regression random finite set multi-Bernoulli filter |
基金项目 国家国防基础科研项目(JCKY2018427C002), 国家自然科学基金项目(61873116, 51668039, 61763029), 甘肃省科技计划项目(18JR3RA137)资助 |
|
中文摘要 |
针对复杂不确定性环境下不规则形状的多扩展目标跟踪问题, 本文提出了一种基于高斯过程回归(GPR)
模型的多扩展目标多伯努利(GPR–ETCBMeMBer)滤波算法. 首先, 在利用有限集统计理论(FISST)将多扩展目标的
状态集与量测集分别建模为多伯努利随机有限集(MBer RFS) 和泊松随机有限集(Poisson RFS) 的基础上, 通过
GPR方法建立多扩展目标随机超曲面的跟踪滤波模型. 然后, 基于容积卡尔曼滤波器(CKF)详细推导并提出GPR多
扩展目标多伯努利滤波算法的高斯混合(GM)实现. 最后, 通过构造对星凸形多扩展目标和多群目标跟踪的仿真实
验验证了本文所提算法的有效性. |
英文摘要 |
In view of the tracking problem of multiple extended target with irregular shape in the complicated and
uncertain environment, a Gaussian process regression (GPR) based multiple extended target multi-Bernoulli filter (GPR–
ETCBMeMBer) algorithm is proposed in this article. Firstly, on the basis of modeling state set and measurement set of
multiple extended target as multi-Bernoulli random finite set (MBer RFS) and Poisson RFS respectively by using finite set
statistics (FISST), This article models the random hypersurface based filtering algorithm of multiple extended target via
GPR approach. Then, this article derives in detail and proposes a Gaussian mixture (GM) implementation of the GPR–
ETCBMeMBer filter via the cubature Kalman filter (CKF). Finally, the effectiveness of the proposed method is verified by
the simulations of star-convex shape multiple extended target tracking and multiple group target tracking. |
|
|
|
|
|