引用本文:李雅倩,薛银涛,李海滨,张文明,高雅昆.基于深度学习的船舶吃水线提取策略[J].控制理论与应用,2020,37(11):2347~2353.[点击复制]
LI Ya-qian,XUE Yin-tao,LI Hai-bin,ZHANG Wen-ming,GAO Ya-kun.Ship waterline extraction strategy based on deep learning[J].Control Theory and Technology,2020,37(11):2347~2353.[点击复制]
基于深度学习的船舶吃水线提取策略
Ship waterline extraction strategy based on deep learning
摘要点击 2664  全文点击 761  投稿时间:2019-12-23  修订日期:2020-05-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.91018
  2020,37(11):2347-2353
中文关键词  船舶吃水线检测  深度学习  语义分割
英文关键词  ship waterline detection  deep learning  semantic segmentation
基金项目  河北省人才工程培养资助项目(A201903005)资助
作者单位E-mail
李雅倩 燕山大学 yaqianli@126.com 
薛银涛 燕山大学  
李海滨 燕山大学  
张文明 燕山大学  
高雅昆* 燕山大学 gaoyakun6@163.com 
中文摘要
      提出了一种基于深度神经网络的船舶吃水线检测方法. 相比传统手工设定的特征, 基于深度神经网络的方 法学习得到的特征具有较强的鲁棒性和稳定性, 能够适应训练集中未曾出现的新物体. 本方法首先使用基于深度学 习的语义分割算法对图像中目标区域进行分割, 通过水平投影得到水线在图像中的位置, 然后根据统计方法得到最 终的吃水深度. 通过实验表明所提方法能对图像中的目标区域进行较为准确的分割, 进而提取到水线值, 通过与人 工获取的结果对比, 证明了所提方法的有效性.
英文摘要
      A method for detecting the position of ship draught based on deep neural network is proposed. Compared with the traditionally selected features, the features learned by the deep neural network-based method have strong robustness and stability, and can adapt to new objects that have not appeared in the training set. The method firstly uses the semantic segmentation algorithm based on deep learning to segment the target region in the image, and obtains the position of the waterline in the image through horizontal projection, and then obtains the final draft depth according to the statistical method. Experiments show that the proposed method can accurately segment the target region in the image, and then calculate the waterline value. By comparing with the results obtained by manual, and the results are proved to be effective.