引用本文: | 闫飞,李浦,续欣莹.基于迭代学习与模型预测控制的交通信号混合控制方法[J].控制理论与应用,2021,38(3):339~348.[点击复制] |
YAN Fei,LI Pu,XU Xin-ying.Traffic signal hybrid control method based on iterative learning and model predictive control[J].Control Theory and Technology,2021,38(3):339~348.[点击复制] |
|
基于迭代学习与模型预测控制的交通信号混合控制方法 |
Traffic signal hybrid control method based on iterative learning and model predictive control |
摘要点击 2697 全文点击 752 投稿时间:2019-12-24 修订日期:2020-09-30 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.91025 |
2021,38(3):339-348 |
中文关键词 迭代学习控制 模型预测控制 交通信号控制 收敛性分析 |
英文关键词 iterative learning control model predictive control traffic signal control convergence analysis |
基金项目 国家自然科学基金项目(61703300), 中国博士后科学基金项目(2019M651082), 山西省应用基础研究项目(201801D221191), 山西省研究生教育创 新计划项目(2019SY157)资助. |
|
中文摘要 |
针对基于迭代学习控制的交通信号控制方法对于路网中存在的非重复性实时干扰不能进行有效处理的问
题, 本文在基于迭代学习控制的交通信号控制方法基础上, 结合模型预测控制滚动优化和实时校正的特点, 提出了
一种基于迭代学习与模型预测控制的交通信号混合控制方法. 该方法在有效利用交通流周期性特征改善路网交通
状况的同时, 可借助模型预测控制的优点对非重复性的实时干扰进行处理, 从而进一步提高交通信号的控制效率.
通过仿真实验对该方法的有效性进行了验证. 实验结果表明, 基于迭代学习与模型预测控制的交通信号混合控制
方法能够更有效地均衡路网内的车辆密度, 进一步提高了路网的通行效率. 最后, 本文还对该方法的收敛性进行了
分析. |
英文摘要 |
The traffic signal control method based on iterative learning control can not effectively deal with the nonrepetitive
real-time disturbance in the road network. Based on the iterative learning traffic signal control method, a mixed
traffic signal control method based on iterative learning and model predictive control is proposed through combining the
rolling optimization and real-time correction characteristics of model predictive control. The proposed method can effectively
improve the traffic conditions of the road network by using the periodic characteristics of traffic flow and deal with the
real-time disturbance through the advantages of model predictive control. Thus, the control efficiency of the traffic signals
is further improved. The effectiveness of the proposed method is verified by simulation experiments. The experimental
results show that the hybrid traffic signal control method based on iterative learning and model predictive control can more
effectively balance the vehicle density in the road network, and further improve the traffic efficiency of the road network.
Finally, the convergence of the proposed method is also analyzed. |
|
|
|
|
|