引用本文:付江涛,付主木,宋书中.燃料电池汽车最优氢耗马尔科夫决策控制[J].控制理论与应用,2021,38(8):1219~1228.[点击复制]
FU Jiang-tao,FU Zhu-mu,SONG Shu-zhong.Best equivalent hydrogen consumption control for fuel cell vehicle based on Markov decision process-based[J].Control Theory and Technology,2021,38(8):1219~1228.[点击复制]
燃料电池汽车最优氢耗马尔科夫决策控制
Best equivalent hydrogen consumption control for fuel cell vehicle based on Markov decision process-based
摘要点击 1981  全文点击 690  投稿时间:2020-03-10  修订日期:2020-09-17
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00132
  2021,38(8):1219-1228
中文关键词  燃料电池汽车  能量管理策略  优化控制  Metropolis-Hastings采样  马尔科夫决策
英文关键词  hybrid electric vehicle (HEV)  optimal control  coordinated control strategy  efficiency analysis  state of charge (SOC)
基金项目  国家自然科学基金项目(61473115)资助.
作者单位E-mail
付江涛 河南科技大学 信息工程学院 sszhonghaust@sina.com 
付主木* 河南科技大学 信息工程学院  
宋书中 河南科技大学 信息工程学院  
中文摘要
      本文基于马尔科夫决策过程提出一种燃料电池汽车最优等效氢燃料消耗控制策略. 控制策略以部分观测 量为基础, 以马尔科夫转移概率矩阵为条件, 采用基于蒙特卡洛马尔科夫(MCMC)算法的Metropolis-Hastings采样方 法, 获得平均奖励输出, 进而通过最优氢燃料消耗代价函数的优化以控制在氢燃料电池系统和动力电池系统间进行 能量分配. 该策略避免了目前燃料电池汽车控制策略过度依赖未来需求功率的预测以及预测模型的准确性. 在建 立燃料电池汽车动力模型, 燃料电池系统和动力电池系统模型的基础上, 进行了包含自学习系统、基于MH采样的 平均奖励过滤系统以及控制选择输出系统的控制策略设计. 通过仿真和实验结果表明基于马尔科夫决策控制策略 的有效性.
英文摘要
      In order to realize the best hydrogen consumption for a fuel-cell vehicle, an Markov decision process based energy management strategy is proposed in this paper. The proposed EMS takes the part observation variables as inputs, according to the Markov transition probability matrix, gets the control sequences of the average reward based on the Metropolis-Hastings (MH) method of MCMC, and further by optimizing the hydrogen consumption cost function to distribute the power requirement between the fuel cell system and the power battery. The proposed EMS avoids the strong dependence of the future power requirement on the inaccuracy of the predictive model. On the basis of establishing the fuel cell vehicle model, the fuel cell system model and the battery model, the EMS which includes modules of self training, average reward filter and selector of control action output is designed based on the Markov decision process. Finally the energy management strategy is verified through simulation and experiment by comparing with three other different control strategies, the results show the effectiveness of the MDP-based energy management strategy.