引用本文:王洪斌,左佳铄,刘世达,郑维,王力.无人驾驶车辆稳态漂移的无模型自适应控制[J].控制理论与应用,2021,38(1):23~32.[点击复制]
WANG Hong-bin,ZUO Jia-shuo,LIU Shi-da,ZHENG Wei,Wang Li.Model-free adaptive control of steady-state drift of unmanned vehicles[J].Control Theory and Technology,2021,38(1):23~32.[点击复制]
无人驾驶车辆稳态漂移的无模型自适应控制
Model-free adaptive control of steady-state drift of unmanned vehicles
摘要点击 3258  全文点击 1000  投稿时间:2020-03-13  修订日期:2020-08-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00135
  2021,38(1):23-32
中文关键词  数据驱动控制  无模型控制  无人驾驶车辆  漂移
英文关键词  data-driven control  model-free control  unmanned vehicle  drift
基金项目  河北省自然科学基金项目(F2016034096), 北京长城学者培养计划项目(CIT&TCD20190304), 北方工业大学科技创新工程“大型城市公共交通系统安全风险监测与智能防控关键技术与设备研发”项目(XM–0000014212181017272).
作者单位邮编
王洪斌 燕山大学 066000
左佳铄 燕山大学 
刘世达 北方工业大学 
郑维* 燕山大学 066000
王力 北方工业大学 
中文摘要
      本文引入一种基于无模型自适应控制算法的无人驾驶车辆稳态漂移控制方案. 首先, 对车辆漂移动态过程 进行动力学分析, 其次, 确定控制系统的控制输入量和控制目标, 然后基于无人驾驶车辆稳态漂移控制系统的动态 线性化数据模型, 设计无模型自适应稳态漂移控制算法、伪雅可比矩阵估计整定算法和伪雅可比矩阵重置算法, 从 而实现无人驾驶车辆的稳态漂移过程. 该无模型自适应控制方法仅使用车辆运行时的输入输出数据, 无须进行复 杂建模, 实现了良好的动态控制结果, 具有的良好自适应性. 最后, 通过数值仿真验证了控制算法的有效性.
英文摘要
      In this paper, a steady-state drift control scheme based on model-free adaptive control algorithm is proposed for unmanned vehicles. First, the dynamic process of the vehicle drift is analyzed. Second, the control input and the control target of the control system are determined. Then, based on the dynamic linearized data model of the steady-state drift control system of the unmanned vehicle, a model-free adaptive steady-state drift control algorithm, a pseudo Jacobian matrix estimation tuning algorithm and a pseudo Jacobian matrix reset algorithm are designed. Thus, a steady-state drift process of the unmanned vehicle is realized. The control method based on model-free adaptive control designed in this paper uses only the input and the output data of the vehicle during operation, which avoids the complicated dynamic modeling process of drift dynamics, and achieves a good adaptiveness of the dynamic control. Finally, the effectiveness of the control algorithm is verified by numerical simulations.