引用本文:柴秀俊,王宏伟,王林,嵇薪儒.基于高斯混合聚类的切换系统的辨识[J].控制理论与应用,2021,38(5):634~640.[点击复制]
CHAI Xiu-jun,WANG Hong-wei,WANG Lin,JI Xin-ru.Identification of switched systems based on Gaussian mixture clustering[J].Control Theory and Technology,2021,38(5):634~640.[点击复制]
基于高斯混合聚类的切换系统的辨识
Identification of switched systems based on Gaussian mixture clustering
摘要点击 1942  全文点击 721  投稿时间:2020-04-12  修订日期:2020-10-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00194
  2021,38(5):634-640
中文关键词  切换系统  模式检测  高斯混合聚类  递推增广最小二乘法  贝叶斯信息准则
英文关键词  switched systems  mode detection  Gaussian mixture clustering  recursive extended least square method  Bayesian information criterion
基金项目  国家自然科学基金项目(61863034)资助.
作者单位E-mail
柴秀俊 新疆大学电气工程学院 317101556@qq.com 
王宏伟* 新疆大学电气工程学院 1195201627@qq.com 
王林 新疆大学电气工程学院  
嵇薪儒 新疆大学电气工程学院  
中文摘要
      针对具有未知切换规则与未知子系统数量的切换系统的辨识问题, 提出一种两阶段辨识方法, 包括模式检 测与参数辨识. 在模式检测阶段, 首先建立高斯混合模型表示采样数据的分布, 并通过轮盘法选择合适的初始模型 参数. 其次, 计算采样数据属于每个子系统的后验概率, 通过极大似然估计算法迭代更新模型参数, 使高斯混合模 型最大化地拟合采样数据的分布. 在此基础上, 通过贝叶斯信息准则确定子系统的数量, 并根据最大后验概率准则 估计切换规则. 在参数辨识阶段, 通过递推增广最小二乘法估计每个子系统的参数向量. 最后, 通过仿真结果验证 了所提方法的有效性.
英文摘要
      In order to solve the identification problem of switched systems with unknown switched rules and unknown number of subsystems, a two-stage identification method is proposed, including mode detection and parameter identification. In the mode detection stage, the Gaussian mixture model is first established to represent the distribution of sampled data, and appropriate initial model parameters are selected according to the roulette method. Secondly, the posterior probability of the sampled data belong to each subsystem is calculated, and the maximum likelihood estimation algorithm is used to iteratively update the model parameters to make the Gaussian mixture model maximum fit the distribution of the sampled data. On this basis, the number of subsystems is determined by the Bayesian information criterion, and the switched rule is estimated according to the maximum a posteriori criterion. In the parameter identification stage, the parameter vector of each subsystem is estimated by the recursive extended least square method. Finally, the effectiveness of the proposed method is verified according to simulation results.