引用本文: | 王小刚,闫光辉,周宁.多阶邻接分布熵下的复杂网络节点相似性分析方法[J].控制理论与应用,2021,38(6):739~747.[点击复制] |
WANG Xiao-gang,YAN Guang-hui,ZHOU Ning.Analysis method of nodes similarity with multi-layer adjacency entropy[J].Control Theory and Technology,2021,38(6):739~747.[点击复制] |
|
多阶邻接分布熵下的复杂网络节点相似性分析方法 |
Analysis method of nodes similarity with multi-layer adjacency entropy |
摘要点击 1995 全文点击 566 投稿时间:2020-07-19 修订日期:2021-03-19 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.00463 |
2021,38(6):739-747 |
中文关键词 复杂网络 信息熵 相对熵 节点相似性 |
英文关键词 complex network information entropy relative entropy nodes similarity |
基金项目 国家自然科学基金项目(62062049), 教育部人文社会科学研究基金项目(20YJCZH212)资助. |
|
中文摘要 |
为弥补宏观网络结构熵描述整体结构信息却忽略局部, 而微观熵描述节点信息又较浅层单一的不足, 提出
一种节点多阶邻接分布熵, 以度量节点多阶邻居的分布特征信息, 便于在自定义阶数尺度上分析复杂网络结构. 该
熵随多阶邻居阶数的增长而增大, 并在节点的离心率处收敛. 在给定的尺度下, 节点各阶邻居分布越均匀则多阶邻
接熵越大. 基于多阶邻接分布相对熵, 比较节点间多阶邻居分布的差异, 从而以一种新的视角分析节点相似性, 并与
其他有代表性的节点相似性方法进行了实验对比, 在互相似比和传播能力指标上, 取得了更好的结果. |
英文摘要 |
Network structure macroscopic entropy attaches great importance to whole structure but takes little notice
of local information, and network structure microscopic entropy superficially describes node information with single layer
or path. The multi-layer adjacency entropy is proposed to measure the distribution characteristics of nodes’ multi-layer
neighbors in this paper, which has a positive effect on the research of complex network structure on the optional layer scale.
The entropy will increase with the increase of the layer scale of multi-layer neighbors and converges at the eccentricity
of the node. On a given scale, the more even distribution of the node multi-layer neighbors are, the higher the multi-layer
adjacency entropy is. Based on the multi-layer adjacency relative entropy, by comparing multi-layer neighbors distribution
among nodes, the similarity of nodes is analyzed from a new perspective. Compared with other representative methods
of nodes similarity, the multi-layer adjacency relative entropy got better result on the index of mutual similarity ratio and
transmission ability. |
|
|
|
|
|