引用本文:赵天烽,程赟,华亮,李海,陈增强.基于定量反馈理论的时滞系统自抗扰控制参数整定[J].控制理论与应用,2021,38(5):578~586.[点击复制]
ZHAO Tian-feng,CHENG Yun,HUA Liang,LI Hai,CHEN Zeng-qiang.Tuning of active disturbance rejection control for time-delay systems via quantitative feedback theory[J].Control Theory and Technology,2021,38(5):578~586.[点击复制]
基于定量反馈理论的时滞系统自抗扰控制参数整定
Tuning of active disturbance rejection control for time-delay systems via quantitative feedback theory
摘要点击 2462  全文点击 727  投稿时间:2020-07-31  修订日期:2021-03-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00494
  2021,38(5):578-586
中文关键词  时滞系统  自抗扰控制  改进Smith预估器  定量反馈理论  参数整定
英文关键词  time delay systems  active disturbance rejection control  modified smith predictor  quantitative feedback theory  parameter tuning
基金项目  国家自然科学基金项目(61973175), 江苏省六大人才高峰项目(XNY–039), 江苏省高等学校自然科学研究重大项目(19KJA350002), 南通市基础科学研究项目(JC2020151)资助.
作者单位E-mail
赵天烽 南通大学 591540233@qq.com 
程赟* 南通大学 chengyun@ntu.edu.cn 
华亮 南通大学  
李海 南通市醋酸纤维有限公司  
陈增强 南开大学  
中文摘要
      工业过程对象普遍存在时滞、模型参数不确定性和外部扰动多等特点, 传统Smith预估控制方法难以设计 出满足期望性能的鲁棒控制器. 针对模型参数不确定性和外部扰动, 本文采用自抗扰控制技术进行估计和补偿. 针 对系统存在时滞的特点, 本文提出改进Smith预估器结构, 提升扩张状态观测器对于扰动估计的实时性. 在此基础 上, 本文以一阶时滞系统为例提出了控制器参数整定方法. 首先根据最优参数选取准则确定预估器模型, 然后在等 效模型框架下采用定量反馈理论整定自抗扰控制器参数, 确保控制系统达到预期性能指标. 在仿真实验中, 将所提 出方法与几种常见时滞系统控制方法进行比较, 通过设定值跟踪、抗扰及蒙特卡罗实验验证了所提出方法具有良 好抗扰能力与鲁棒性.
英文摘要
      Industrial process generally involves the characteristics of time-delay, parameter uncertainties and external disturbances. It is difficult for traditional control methods with smith predictor to design a robust controller that satisfies the desired performance. For parameter uncertainties and external disturbances, an active disturbance rejection control strategy is used to estimate and compensate the disturbances. For the characteristics of time-delay, a modified smith predictor, which can improve the real-time performance of extended state observer for disturbance estimation, is proposed in this paper. On this basis, a controller parameter tuning method for the first-order time-delay system is proposed. Firstly, the model of the predictor is determined according to the optimal parameter selection criteria. Then, in the framework of equivalent model, the parameters of the active disturbance rejection controller are tuned by quantitative feedback theory in order to achieve the expected performance index. In the simulation experiments, the proposed method is compared with several traditional control methods for time-delay systems. The proposed method has better disturbance rejection performance and robustness in the set point tracking, disturbance rejection and Monte Carlo experiments.