引用本文:罗捷,鲁良叶,何德峰,俞立,杜海平.通信拓扑切换下车辆队列分布式模型预测控制[J].控制理论与应用,2021,38(7):887~896.[点击复制]
LUO Jie,LU Liang-ye,HE De-feng,YU Li,DU Hai-ping.Distributed model predictive control of vehicle platoons with switching communication topologies[J].Control Theory and Technology,2021,38(7):887~896.[点击复制]
通信拓扑切换下车辆队列分布式模型预测控制
Distributed model predictive control of vehicle platoons with switching communication topologies
摘要点击 4016  全文点击 1461  投稿时间:2020-09-29  修订日期:2020-12-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.00662
  2021,38(7):887-896
中文关键词  模型预测控制  车辆队列  分布式控制  通信拓扑切换  稳定性
英文关键词  model predictive control  vehicle platoons  distributed control  switching communication topologies  stability
基金项目  国家自然科学基金项目(61773345), 浙江省高校基本科研业务费项目(RF–C2020003)资助.
作者单位E-mail
罗捷 浙江工业大学信息工程学院 2111903059@zjut.edu.cn 
鲁良叶 浙江工业大学信息工程学院  
何德峰* 浙江工业大学信息工程学院 hdfzj@zjut.edu.cn 
俞立 浙江工业大学信息工程学院  
杜海平 伍伦贡大学电气与计算机和通讯工程学院  
中文摘要
      考虑通信拓扑切换下异质非线性车辆队列系统协同控制问题, 提出一种能够保证车辆队列稳定和弦稳定 的分布式模型预测控制策略. 先结合车辆队列动态通信拓扑切换过程, 构建与时间相关的图函数, 再利用邻居车辆 状态信息描述平均协同代价函数, 并将其引入局部滚动时域优化控制问题. 进一步, 应用平均停留时间概念和切换 系统Lyapunov稳定性理论, 建立通信拓扑切换下车辆队列闭环系统的内部稳定性和弦稳定性充分条件. 最后通过两 组典型交通场景的对比仿真验证本文策略的有效性.
英文摘要
      This paper considers the cooperative control problem of heterogeneous nonlinear vehicle platooning systems with switching communication topologies and proposes the distributed model predictive control strategy with guaranteed stability and string stability of the vehicle platoon. The time-related graph function is firstly constructed for the switching process of the dynamic communication topologies of the vehicle platoon. Then the average cooperative cost function is formulated using the neighbor vehicle state information and induced into the local receding horizon optimization control problem. Moreover, the sufficient conditions with respect to the weighted matrix and the value function are established to ensure the internal stability and the string stability of the closed-loop system of the vehicle platoon with switching communication topologies by combining the concept of the average dwell-time and the Lyapunov’s stability theory of switching systems. Finally, the two groups of comparison simulations on some representative traffic scenarios are used to illustrate the effectiveness of the proposed scheme.