引用本文:唐志国,张富尧,马彦.基于自适应动态规划的移动装弹机械臂轨迹控制[J].控制理论与应用,2021,38(9):1442~1451.[点击复制]
TANG Zhi-guo,ZHANG Fu-yao,MA Yan.Adaptive dynamic programming based trajectory tracking control of mobile missile-loading manipulator[J].Control Theory and Technology,2021,38(9):1442~1451.[点击复制]
基于自适应动态规划的移动装弹机械臂轨迹控制
Adaptive dynamic programming based trajectory tracking control of mobile missile-loading manipulator
摘要点击 2342  全文点击 815  投稿时间:2020-10-14  修订日期:2021-08-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.00702
  2021,38(9):1442-1451
中文关键词  移动机械臂  自适应动态规划  轨迹控制  拉格朗日方程
英文关键词  mobile missile-loading manipulator  adaptive dynamic programming  trajectory tracking control  Lagrange equation
基金项目  省校共建项目(SXGJSF2017–2–1–1), 吉林省科技发展计划项目(20170520060JH), 吉林省产业创新专项基金项目(2018C035–2)资助.
作者单位E-mail
唐志国 吉林大学 tangzhiguo@jlu.edu.cn 
张富尧 吉林大学  
马彦* 吉林大学 mayan_maria@163.com 
中文摘要
      针对移动装弹机械臂系统非线性、强耦合、受多种不确定因素影响的问题, 本文基于自适应动态规划方法, 提出了仅包含评价网络结构的轨迹跟踪控制方法, 有效减小了系统跟踪误差. 首先, 考虑到系统非线性特性、变量 间强耦合作用及重力因素的影响, 通过拉格朗日方程建立了移动装弹机械臂的动力学模型. 其次, 针对系统存在不 确定性上界未知的问题, 建立单网络评价结构, 通过策略迭代算法, 求解哈密顿–雅可比–贝尔曼方程, 基于李雅普诺 夫稳定性理论, 设计了自适应动态规划轨迹跟踪控制方法. 最后, 通过仿真实验将该控制方法与自适应滑模控制方 法进行了对比, 进一步检验了所设计控制方法的有效性.
英文摘要
      In this paper, the trajectory tracking control with critic-only structure is studied to reduce tracking error based on adaptive dynamic programming in the mobile missile-loading manipulator system, when there are nonlinear, strong coupling and many kinds of uncertainties. Firstly, a dynamic model using Lagrange equation is established for the mobile missile-loading manipulator while all of the above impacts, besides gravity of manipulator are simultaneously considered. Furthermore, in the case of unknown upper bound uncertainty in the system, an adaptive dynamic programming trajectory tracking controller is presented to improve the control precision. According to neural network algorithm, critic-only policy iteration algorithm for mobile missile-loading manipulator is proposed. Using the policy iteration method can solve the HJB equation and approximate the optimal control strategy. And then the asymptotic stability of closed-loop system is proved by Lyapunov stability theory. Finally, the effectiveness of the designed control method is further verified by simulation, compared with the adaptive sliding mode controller.