引用本文: | 于淼,刘建昌,郭戈.基于随机分布理论的递推子空间辨识[J].控制理论与应用,2021,38(9):1333~1340.[点击复制] |
YU Miao,LIU Jian-chang,GUO Ge.Recursive subspace identification based on random distribution theory[J].Control Theory and Technology,2021,38(9):1333~1340.[点击复制] |
|
基于随机分布理论的递推子空间辨识 |
Recursive subspace identification based on random distribution theory |
摘要点击 1988 全文点击 666 投稿时间:2020-11-19 修订日期:2021-01-30 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.00819 |
2021,38(9):1333-1340 |
中文关键词 递推子空间辨识 在线辨识 随机分布理论 连续时间系统 |
英文关键词 recursive subspace identification online identification random distribution theory continuous-time systems |
基金项目 国家自然科学基金项目(62003082, 61773106, U1808205), 流程工业综合自动化国家重点实验室基础科研业务费项目(2013ZCX02–03), 河北省 自然科学基金项目(F2021501018), 中央高校基本科研业务费项目(N2023009)资助. |
|
中文摘要 |
在实际生产过程中, 采用传统子空间辨识法建立的离线模型并不能有效准确地跟踪系统的动态变化; 奇异
值分解等线性代数工具虽然增加算法的数值鲁棒性, 但也相应增加了子空间辨识的在线递推困难. 为解决上述问
题, 本文针对连续时间系统提出基于随机分布理论的递推子空间辨识方法. 首先, 通过随机分布理论构建系统的连
续随机分布函数, 并利用微分计算获得系统等价的输入输出矩阵方程. 然后, 采用将输入输出数据矩阵“R”规模
固定的方法, 达到数据压缩的目的. 最后, 通过最小二乘法和残差分析法递推更新模型的系统矩阵和噪声强度直至
达到辨识要求. 仿真结果验证了所提方法的有效性和精确性. |
英文摘要 |
In the practical process, the offline model estimated by the traditional subspace identification method cannot
track the dynamic of the systems effectively. Although the numerical robustness of the algorithm is improved by the singular
value decomposition, it also increases the difficulty of online recursion in subspace identification process. In order to solve
the problems above, this paper presents a recursive subspace identification method for continuous-time stochastic systems
via random distribution theory. Firstly, the continuous random distribution function is deduced by random distribution
theory and the input-output matrix equation of the systems is obtained by the differential calculation. Secondly, we reduce
the computational burden and storage cost by keeping the size of input and output data to be constant. Finally, the system
matrices and noise intensity are updated recursively by the least square method and residual analysis. Simulation results
show the efficiency and accuracy of the proposed method. |
|
|
|
|
|