引用本文:谷雨,赵修斌,代传金.基于网格细胞模型的类脑大尺度空间矢量导航方法[J].控制理论与应用,2021,38(12):2094~2100.[点击复制]
GU Yu,ZHAO Xiu-bin,DAI Chuan-jin.Brain-like large-scale spatial vector navigation method based on grid cell model[J].Control Theory and Technology,2021,38(12):2094~2100.[点击复制]
基于网格细胞模型的类脑大尺度空间矢量导航方法
Brain-like large-scale spatial vector navigation method based on grid cell model
摘要点击 1745  全文点击 569  投稿时间:2020-12-31  修订日期:2021-05-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.00939
  2021,38(12):2094-2100
中文关键词  矢量导航  类脑导航  振荡干扰模型  逐级模糊度确定
英文关键词  vector navigation  brain-like navigation  oscillatory interference model  stepwise ambiguity determination
基金项目  国家自然科学基金项目(61973314)资助.
作者单位E-mail
谷雨 空军工程大学 441551764@qq.com 
赵修斌 空军工程大学  
代传金* 空军工程大学 dcjdai@126.com 
中文摘要
      动物和人类可以使用感官中不完整的空间信息来快速定位其当前位置并导航到目标, 为未知环境下的矢 量导航提供了生物模型. 本文针对基于连续吸引子模型和余数系统的大尺度空间矢量导航方法所存在的鲁棒性问 题, 提出了一种基于振荡干扰模型和逐级模糊度确定法的大尺度空间矢量导航方法. 仿真结果表明, 在2%的测量噪 声条件下, 该方法可以在245 m*245 m*sin 60° 的大尺度环境下准确解算出位置矢量, 并且每个维度中位置的解算 精度可以达到1 cm以内, 有效提高了大尺度空间内矢量导航的鲁棒性.
英文摘要
      Animals and humans can quickly use the incomplete spatial information in the senses to locate their current position and navigate to the target, providing a biological model for vector navigation in an unknown environment. Aiming at the robustness problems of the large-scale spatial vector navigation method based on the continuous attractor model and the remainder system, a large-scale spatial vector navigation method is proposed based on the oscillatory interference model and the stepwise ambiguity determination method. The simulation results show that under the condition of 2% measurement noise, this method can accurately calculate the position vector in a large-scale environment of 245 m*245 m* sin 60°, and the calculation accuracy of the position in each dimension can reach within 1 cm, which effectively improves the robustness of vector navigation in a large-scale space.