引用本文: | 杨衍婷,梁彦.跳变约束下马尔可夫切换非线性系统滤波[J].控制理论与应用,2022,39(4):643~652.[点击复制] |
YANG Yan-ting,LIANG Yan.Nonlinear filtering for Markov switched systems under jump constraints[J].Control Theory and Technology,2022,39(4):643~652.[点击复制] |
|
跳变约束下马尔可夫切换非线性系统滤波 |
Nonlinear filtering for Markov switched systems under jump constraints |
摘要点击 1814 全文点击 620 投稿时间:2021-01-17 修订日期:2022-01-10 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10058 |
2022,39(4):643-652 |
中文关键词 马尔可夫切换系统 跳变约束 交互式多模型 伪量测 统计线性回归 状态估计 |
英文关键词 Markov switched systems jump constraints interactive multi-model pseudo-measurement linear statistical regression state estimation |
基金项目 国家自然科学基金项目(61873205), 陕西省教育厅专项科研计划项目(18JK0829), 咸阳师范学院青年骨干教师项目(XSYGG201801)资助. |
|
中文摘要 |
针对系统状态演化多模不确定性和状态约束多样性, 本文提出了跳变约束下马尔可夫切换非线性系统的
交互式多假设估计方法. 定义了包含跳变马尔可夫参数可能取值的假设集, 根据最优贝叶斯滤波, 推导出状态与假
设的后验概率递推更新. 基于统计线性回归线性化非线性函数, 利用伪量测法, 将线性化的约束扩维到真实量测中,
给出了非线性系统滤波的近似解析最优解. 最终给出所提算法的稀疏网格积分近似最优估计实现. 在交叉道路机动
目标跟踪仿真场景中, 所提算法的滤波精度优于基于泰勒展开的交互式多模型算法, 基于统计线性回归的交互式多
模型算法, 以及基于泰勒展开的非线性系统约束滤波算法. |
英文摘要 |
For multi-mode uncertainty of system state evolution and diversity of state constraints, an interactive multihypothesis
estimation method for Markov switched systems with jump constraints is proposed. The hypothesis set containing
the possible values of the jump Markov parameter is defined. According to the optimal Bayesian filtering, the recursive
update of the posterior probability of the state and hypothesis is derived. Based on statistical linear regression, the pseudo
measurement method is used to extend the linearized constraint to the real measurement, and the approximate analytical
optimal solution of the nonlinear system filtering is given. Finally, an approximate optimal estimation of the sparse grid
integral algorithm is presented. In the simulation scenario of crossing road maneuvering target tracking, the filtering accuracy
of the proposed algorithm is better than that of the interactive multi-model algorithm based on Taylor expansion, the
interactive multi-model algorithm based on statistical linear regression, and the constrained filtering algorithm for nonlinear
systems based on Taylor expansion. |
|
|
|
|
|