引用本文: | 金江涛,许子非,李春,缪维跑,肖俊青,孙康.基于深度学习与混沌特征融合的滚动轴承故障诊断[J].控制理论与应用,2022,39(1):109~116.[点击复制] |
JIN Jiang-tao,XU Zi-fei,LI Chun,MIAO Wei-pao,XIAO Jun-qing,SUN Kang.Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion[J].Control Theory and Technology,2022,39(1):109~116.[点击复制] |
|
基于深度学习与混沌特征融合的滚动轴承故障诊断 |
Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion |
摘要点击 2958 全文点击 767 投稿时间:2021-02-28 修订日期:2021-10-28 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10177 |
2022,39(1):109-116 |
中文关键词 卷积神经网络 长短期记忆网络 支持向量机 混沌 特征融合 轴承 故障诊断 |
英文关键词 convolutional neural network long short term memory networks support vector machine chaos feature fusion bearing fault diagnosis |
基金项目 国家自然科学基金项目(51976131, 51676131, 52006148), 上海市“科技创新心动计划”地方院校能力建设项目(19060502200)资助. |
|
中文摘要 |
本文针对现有滚动轴承智能故障诊断方法在面向大噪声背景下鲁棒性能差的问题. 基于混沌理论, 提出采
用相空间重构方法还原并丰富轴承振动的动力学特性, 通过卷积神经网络(CNN)提取混沌序列中的高级抽象特征,
又考虑故障信号具有长程相关性, 将低维抽象故障特征引入长短期记忆网络(LSTM), 以灰狼算法优化的支持向量
机(OSVM)作为分类器, 提出CCNN (Chaotic CNN)–LSTM–OSVM智能故障诊断方法. 试验结果表明, 在处理信噪比
为??6 dB信号时, 该方法仍具有89.96%的准确率, 相比以Softmax作为分类器的CNN–LSTM和CCNN–LSTM方法分
别高出15.36%和5.21%, 且在收敛速度方面亦有较大优势. |
英文摘要 |
This paper addresses the problem of poor robustness of existing rolling bearing intelligent fault diagnosis
methods under the background of large noise. Based on chaos theory, it is proposed to use the phase space reconstruction
method to restore and enrich the dynamic characteristics of bearing vibration, to extract the high-level abstract features in
the chaotic sequence through the convolution neural network (CNN), and to consider the long-range correlation of the fault
signal. The low-dimensional abstract fault features are introduced into the long and short-term memory network (LSTM),
and the support vector machine (OSVM) optimized by the gray wolf algorithm is used as the classifier, and the CCNN
(Chaotic CNN)-LSTM-OSVM intelligent fault diagnosis method is proposed. The experimental results show that when
the SNR is ??6 dB, the accuracy of this method is still 89.96%, which is 15.36% and 5.21% higher than the CNN–LSTM
and CCNN–LSTM methods with Softmax as the classifier respectively. In addition, the convergence speed also has a great
advantage. |
|
|
|
|
|