引用本文:廖常超,周兰,潘昌忠,陈静.基于等价输入干扰补偿的改进型重复控制系统参数优化设计[J].控制理论与应用,2022,39(4):653~662.[点击复制]
LIAO Chang-chao,ZHOU Lan,PAN Chang-zhong,CHEN Jing.Parameter optimization design of modified repetitive control system based on equivalent input disturbance compensation[J].Control Theory and Technology,2022,39(4):653~662.[点击复制]
基于等价输入干扰补偿的改进型重复控制系统参数优化设计
Parameter optimization design of modified repetitive control system based on equivalent input disturbance compensation
摘要点击 2114  全文点击 651  投稿时间:2021-03-18  修订日期:2021-06-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.10228
  2022,39(4):653-662
中文关键词  重复控制  等价输入干扰  扰动估计和补偿  粒子群优化算法  参数优化
英文关键词  repetitive control  equivalent input disturbance  disturbance estimation and compensation  particle swarm optimization algorithm  parameter optimization
基金项目  国家自然科学基金项目(61673167), 湖南省自然科学基金项目(2019JJ50146), 湖南省研究生科研创新项目(CX20200997)资助.
作者单位E-mail
廖常超 湖南科技大学信息与电气工程学院 1761950056@qq.com 
周兰* 湖南科技大学信息与电气工程学院 zhoulan75@163.com 
潘昌忠 湖南科技大学信息与电气工程学院  
陈静 湖南科技大学信息与电气工程学院  
中文摘要
      针对一类同时具有周期性参考输入和非周期扰动的伺服系统, 提出基于等价输入干扰补偿的改进型重复 控制系统参数优化设计方法, 实现对非周期扰动的有效抑制和周期性参考输入的高精度跟踪控制. 首先, 利用全维 状态观测器的估计误差构造等价输入干扰估计器, 通过将等价输入干扰估计值反馈到控制输入端, 建立基于等价输 入干扰补偿的复合重复控制规律. 然后, 基于小增益定理推导出系统的稳定性条件, 引入一个对系统抗扰性能、跟 踪性能和收敛速度进行整体评价的性能目标函数, 建立系统参数优化模型, 采用粒子群优化算法, 实现对系统重复 控制器参数、等价输入干扰估计器参数和状态反馈控制器参数的同时优化. 最后, 通过数值仿真分析对比说明所提 方法的有效性和优越性.
英文摘要
      For a class of servo systems with both periodic reference input and aperiodic disturbance, a modified repetitive control system parameter optimization design method based on equivalent input disturbance compensation is proposed to achieve effective suppression of aperiodic disturbance and high-precision tracking control of periodic reference input. Firstly, the equivalent input disturbance estimator is constructed by using the estimation error of the full order state observer. By feeding the estimated value of the equivalent input disturbance back to the control input, the compound repetitive control law based on the equivalent input disturbance compensation is established. Then, based on the small gain theorem, the stability conditions of the system are derived, and a performance objective function for overall evaluation of the system’s anti-disturbance performance, tracking performance and convergence speed is introduced, and the system parameter optimization model is established. The particle swarm optimization algorithm is used to achieve the system Simultaneous optimization of repetitive controller parameters, equivalent input disturbance estimator parameters, and state feedback controller parameters. Finally, the validity and superiority of the proposed method are verified by numerical simulation and comparative analysis.