引用本文: | 芦竹茂,白洋,黄纯德,关少平,孟晓凯.变分模态分解组合广义形态滤波器的MEMS陀螺仪去噪方法[J].控制理论与应用,2023,40(3):509~515.[点击复制] |
LU Zhu-mao,BAI Yang,HUANG Chun-de,GUAN Shao-ping,MENG Xiao-kai.De-noising method of MEMS gyroscope based on variational mode decomposition combined generalized morphological filter[J].Control Theory and Technology,2023,40(3):509~515.[点击复制] |
|
变分模态分解组合广义形态滤波器的MEMS陀螺仪去噪方法 |
De-noising method of MEMS gyroscope based on variational mode decomposition combined generalized morphological filter |
摘要点击 1366 全文点击 413 投稿时间:2021-03-31 修订日期:2022-05-25 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10272 |
2023,40(3):509-515 |
中文关键词 变分模态分解 组合广义形态滤波 结构元素 MEMS陀螺仪 微机电系统 信号去噪 |
英文关键词 VMD CGMF SE MEMS gyroscope microelectromechanical systems signal denoising |
基金项目 国网山西省电力公司科技项目(52053018000T)资助. |
|
中文摘要 |
为了更加有效地消除MEMS陀螺仪输出信号存在大量不同类型噪声的同时保留有效信号特征, 本文提出
了一种变分模态分解(VMD)的多尺度自适应组合广义形态滤波器(CGMF)去噪方法. 该方法首先采用VMD将MEMS
陀螺仪原始输出信号分解为多个不同尺度的具有特殊稀疏性的一高低频离散带限子信号内模函数(BLIMFs),
然后通过选择CGMF中合适的结构元素(SEs)长度和几何结构对上述不同尺度BLIMFs进行自适应去噪处理, 最后重
建去噪后的BLIMFs获得去噪信号. 通过实验验证并与现有的信号去噪方法相比, 本方法的主要优点在于: 1) 解决
了CGMF中SEs的长度和几何结构等关键参数的自适应选择问题; 2) 针对不同类型噪声均进行了有效的分离和去噪
处理. |
英文摘要 |
In order to effectively eliminate a large number of different types of noise in the output signal of the MEMS
gyroscope while preserving the effective signal characteristics, a multi-scale adaptive combined generalized morphological
filter (CGMF) denoising method based on the variational mode decomposition (VMD) is proposed in this paper. Firstly,
the original output signal of the MEMS gyroscope is decomposed into a number of high and low frequency discrete band
limited intrinsic mode functions (BLIMFs) of different scales with special sparsity by VMD. Then, the adaptive denoising
is performed on the BLIMFs of different scales by selecting appropriate structural elements (SEs) length and geometric
structure in CGMF. Finally, the denoised BLIMFs is reconstructed to obtain the denoised signal. Compared with the existing
signal denoising methods, the main advantages of this method are as follows: 1) it solves the adaptive selection of key
parameters such as the SEs length and geometric structure in CGMF; 2) effective separation and denoising are carried out
for different types of noise. |