引用本文:牛艺春,刘诗洋,高明,盛立.线性随机系统的微小传感器故障检测[J].控制理论与应用,2022,39(5):879~886.[点击复制]
NIU Yi-chun,LIU Shi-yang,GAO Ming,SHENG Li.Incipient sensor fault detection for linear stochastic systems[J].Control Theory and Technology,2022,39(5):879~886.[点击复制]
线性随机系统的微小传感器故障检测
Incipient sensor fault detection for linear stochastic systems
摘要点击 1627  全文点击 569  投稿时间:2021-06-21  修订日期:2022-02-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.10534
  2022,39(5):879-886
中文关键词  随机系统  微小故障检测  可检测性分析  移动加权平均方法
英文关键词  stochastic systems  incipient fault detection  detectability analysis  weighted moving average method
基金项目  国家自然科学基金项目(62173343, 62073339, 62033008), 山东省自然科学基金项目(ZR2020YQ49)资助.
作者单位E-mail
牛艺春 中国石油大学(华东) niuyichun123@163.com 
刘诗洋 中国石油大学(华东)  
高明 中国石油大学(华东)  
盛立* 中国石油大学(华东) shengli@upc.edu.cn 
中文摘要
      针对一类线性随机系统, 研究了其微小传感器故障检测问题. 基于Kalman滤波算法构造状态估计器, 利用 移动加权平均方法设计残差与评价函数. 根据非中心卡方分布的性质, 分析了故障幅值、窗口长度、误报率和漏报 率之间的关系. 采用不等式技术, 得到了确保在统计意义下微小故障可检测性的最优权值和最小窗口长度. 最后, 通 过一个仿真实例验证了所提方法的有效性.
英文摘要
      In this paper, the problem of incipient sensor fault detection is investigated for linear stochastic systems. The state estimator is constructed by using the Kalman filtering algorithm. Then, the residual and the evaluation function are designed by means of the weighted moving average method. According to the property of the non-central χ2 distribution, the relationships among the fault amplitude, the window length, the false alarm rate and the missed detection rate are analyzed. By using the inequality technique, the optimal weights and the minimum window length, which ensure the detectability of incipient faults in a probabilistic sense, are derived. Finally, an illustrative example is provided to verify the effectiveness of the proposed method.