引用本文: | 张宇,程开新,竺俊杰,武国勋,姚熊亮.级联RTAC系统动态神经网络辨识与分散镇定控制[J].控制理论与应用,2022,39(8):1451~1459.[点击复制] |
ZHANG Yu,CHENG Kai-xin,ZHU Jun-jie,Wu Guo-xun,YAO Xiong-liang.Dynamic neural network identification and decentralized stabilization control of cascade RTAC system[J].Control Theory and Technology,2022,39(8):1451~1459.[点击复制] |
|
级联RTAC系统动态神经网络辨识与分散镇定控制 |
Dynamic neural network identification and decentralized stabilization control of cascade RTAC system |
摘要点击 3399 全文点击 472 投稿时间:2021-07-08 修订日期:2022-09-08 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.10602 |
2022,39(8):1451-1459 |
中文关键词 级联RTAC 动态神经网络 分散控制 不确定关联项 辨识 |
英文关键词 cascade RTAC dynamic neural network decentralized control uncertain interconnected term identification |
基金项目 国家自然科学基金项目(5197090325, 51809054), 黑龙江省自然科学基金项目(LH2020E075)资助. |
|
中文摘要 |
针对含不确定关联项的级联RTAC系统的镇定控制问题, 提出了一种基于动态神经网络辨识的分散控制方
案. 应用拉格朗日方程建立起了考虑不确定非线性作用力的级联RTAC系统数学模型, 采用动态神经网络实现级
联RTAC系统中不确定关联项的在线辨识, 通过构造含神经网络权值矩阵迹的Lyapunov函数, 证明了辨识误差的一
致有界性. 通过动态神经网络辨识不确定关联项、补偿系统建模误差, 建立级联RTAC系统分层滑模控制算法, 以实
现级联RTAC系统的高精度分散镇定控制. 数值仿真验证了动态神经网络的引入对级联RTAC系统分散镇定控制系
统瞬态幅值抑制、稳态精度提升的效果. |
英文摘要 |
A dynamic neural network based decentralized control scheme is proposed for the stabilization of cascade
RTAC system. The mathematical model of the cascade RTAC with uncertain interconnected forces is derived. The dynamic
neural network is adopted for identification of uncertain interconnected terms in the mathematical model, and uniform
boundedness theorem of identification errors is proved, via introducing Lyapunov function including the trace of weight
matrix of dynamic neural network. Then, a decentralized stabilization control scheme of cascade RTAC system is designed
using the hierarchical sliding mode algorithm to precisely stabilize the cascade RTAC system, based on dynamic neural
network identification and compensation of modeling error. Numerical simulations are conducted to prove the effectiveness
of the proposed control scheme with the introduction of dynamic neural network identification in suppression of vibration
amplitude and control precision. |
|
|
|
|
|