引用本文: | 李习康,许璟,牛玉刚.带记忆比例–积分–时滞输出滑模控制器设计[J].控制理论与应用,2022,39(12):2254~2261.[点击复制] |
Li Xi-kang,XU Jing,NIU Yu-gang.Memory proportional-integral-retarded output sliding mode controller design[J].Control Theory and Technology,2022,39(12):2254~2261.[点击复制] |
|
带记忆比例–积分–时滞输出滑模控制器设计 |
Memory proportional-integral-retarded output sliding mode controller design |
摘要点击 1670 全文点击 393 投稿时间:2021-07-09 修订日期:2023-02-01 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.10605 |
2022,39(12):2254-2261 |
中文关键词 时滞 滑模控制 PIR滑模面 鲁棒性 频域分析 |
英文关键词 time delay sliding mode control PIR sliding mode surface robustness frequency-domain analysis |
基金项目 国家自然科学基金项目(61803156, 62073139)资助. |
|
中文摘要 |
传统的比例–积分–微分(PID)滑模控制具有高频测量噪声鲁棒性差、参数整定方法复杂等缺点. 针对上述问题, 本文设计了一种基于带记忆输出反馈的比例–积分–滞后(PIR)滑模控制器, 并提出了基于频域分析的控制器参数自整定方法. 在控制器选型上, 将“带记忆”反馈机制引入到滑模面设计中, 提高滑模面的平滑滤波和高频噪声抑制能力. 首先, 基于PIR滑模面设计了等效控制律, 实现输出反馈下的闭环系统的滑模态稳定. 其次, 分析了基于输出反馈的PIR滑模面的有限时间可达性, 确保系统在存在匹配扰动时仍保持良好的鲁棒性. 最后, 在控制器参数整定方面, 通过迭代消除法消去时滞项在闭环特征方程中的影响, 同时基于衰减速率对系统进行极点配置, 实现PIR参数的在线自整定. 仿真结果表明, 该整定方法能够保证闭环二阶系统具有良好的鲁棒性和抗干扰性能. |
英文摘要 |
The traditional proportional-integral-differential (PID) sliding mode control has defects of high frequency noise robustness and complex parameter tuning methods. For the above problems, this paper designs a proportionalintegral-retarded (PIR) sliding mode controller based on an output feedback, and gives the self-tuning method of controller parameters based on the frequency-domain analysis. On the controller type selection, introducing the “memory” output feedback mechanism into sliding mode surface, and the historical output term is used to improve the smooth filtering and high-frequency noise suppression ability of the sliding mode surface. Firstly, designing an equivalent control law based on the PIR sliding mode surface, to realize the sliding mode stability of the closed-loop system under the output feedback. Secondly, the finite-time reachability of the PIR sliding modes surface based on the output feedback is analyzed to ensure that the system maintains good robustness in the presence of matching perturbations. Finally, in terms of controller parameter tuning, online self-tuning of the PIR parameter is realized by eliminating the effects of the delay term in the closed-loop characteristic equation and poles the system based on the decay rate. Simulation results show that the tuning method ensures good robustness and interference resistance of the closed-loop system. |
|
|
|
|
|