引用本文: | 姜河,周航,解相朋,杨东升,赵琰.考虑温度舒适度与碳交易的综合能源系统优化调控[J].控制理论与应用,2022,39(3):519~526.[点击复制] |
JIANG He,ZHOU Hang,XIE Xiang-peng,YANG Dong-sheng,ZHAO Yan.Optimal control of integrated energy system considering temperature comfort and carbon trade[J].Control Theory and Technology,2022,39(3):519~526.[点击复制] |
|
考虑温度舒适度与碳交易的综合能源系统优化调控 |
Optimal control of integrated energy system considering temperature comfort and carbon trade |
摘要点击 2010 全文点击 696 投稿时间:2021-07-25 修订日期:2021-10-31 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10665 |
2022,39(3):519-526 |
中文关键词 综合能源系统 碳交易 优化调控 多能互补 |
英文关键词 integrated energy system carbon trade optimal control multi-energy complementarity |
基金项目 辽宁省博士科研启动基金项目(2020–BS–181), 国家重点研发计划项目(2018YFB1700503), 国家自然科学基金优秀青年基金项目(62022044), 兴辽英才计划项目(XLYC1907138), 辽宁省重点研发计划项目(2020JH2/10300101)资助. |
|
中文摘要 |
综合能源系统可以实现多能互补、能源梯级利用, 但设备间复杂的耦合关系对新能源消纳与源荷波动平抑
带来了极大挑战. 针对此类问题, 本文提出基于舒适度的温差储能与阶梯奖惩碳交易机制的调控模型. 首先, 在电价
需求响应的基础上, 构建由舒适度划分的冷热需求响应的温差储能模型. 其次, 建立以系统运行成本与碳排放量最
低为目标的综合调控模型, 在优化供给侧设备出力的基础上提高用户响应能力, 并考虑多种能量转换设备以提升系
统运行的多能互补能力. 最后, 通过Gurobi求解器进行算例仿真, 验证了该模型的可行性与有效性. |
英文摘要 |
Integrated energy system can realize multi-energy complementation and energy cascade utilization. The complex
coupling relationship between the various devices has brought great challenges to the consumption of new energy
and the suppression of source and load fluctuations. For such problems, this paper proposes a dispatching model based on
comfortable temperature difference energy storage and reward-punishment tiered carbon trading mechanism. First, temperature
comfort is used as a stimulus factor to construct a temperature difference energy storage model based on cold and
heat demand response. Secondly, a comprehensive dispatching model of an integrated energy system to maximize economic
benefits and minimize carbon emissions is established. This model improves user responsiveness while optimizing the
output of supply-side equipment. In addition, the ability to complement multiple energy sources is significantly improved
through a variety of high-energy conversion equipments. Finally, the effectiveness and feasibility of the model are verified
by a numerical example using Gurobi solver. |
|
|
|
|
|