引用本文: | 丁浩峰,谢永芳,谢世文,王杰.基于特征层密集连接与注意力机制的宽度学习系统及其在锌浮选过程的应用[J].控制理论与应用,2023,40(1):111~120.[点击复制] |
DING Hao-feng,XIE Yong-fang,XIE Shi-wen,WANG Jie.Dense connection and attention-based broad learning system and its application to zinc flotation process[J].Control Theory and Technology,2023,40(1):111~120.[点击复制] |
|
基于特征层密集连接与注意力机制的宽度学习系统及其在锌浮选过程的应用 |
Dense connection and attention-based broad learning system and its application to zinc flotation process |
摘要点击 1439 全文点击 560 投稿时间:2021-08-17 修订日期:2022-03-02 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.10753 |
2023,40(1):111-120 |
中文关键词 宽度学习 注意力机制 密集特征 软测量 锌浮选 |
英文关键词 broad learning system attention mechanism dense features soft sensor zinc flotation |
基金项目 广东省重点领域研发计划项目(2021B0101200005), 国家自然科学基金项目(62003370, 62233018), 湖南省自然科学基金项目(2021JJ30873)资助. |
|
中文摘要 |
本文针对宽度学习存在计算消耗资源大、计算过程冗余数据较多等问题, 提出了一种基于特征层密集连接
与注意力机制的宽度学习系统(DCA-BLS), 并利用其建立锌浮选过程快粗槽底流品位在线预测模型. 首先将宽度学
习系统的特征层不同窗口进行密集连接, 引入弹性网络进行稀疏化处理, 利用注意力机制处理特征节点, 获得不同
特征节点的权值, 再将加权后的特征节点与输入的数据相结合, 共同作为增强层节点的输入, 使模型更为紧凑. 在
公共数据集和锌泡沫浮选数据上将DCA-BLS与其他预测算法进行了对比实验, 实验结果表明, 本文提出的方法训
练时间短, 且相较于其他所比较方法具有更高的准确率. |
英文摘要 |
In this paper, a dense connection and attention-based broad learning system (DCA-BLS) is proposed to
address the issues of large computing resource consumption and redundant data in the training process of broad learning
system. It is applied to predict the zinc ore froth flotation process fast coarse trough bottom flow grade. Firstly, the
different windows in feature layer of the broad learning system are densely connected. Then elastic network is employed
to sparse the model, and attention mechanism is proposed to deal with nodes in feature layer, to obtain the weights of
different characteristics of the nodes. The weighted nodes in feature layer of BLS are combined with the input data. The
combination is used as the input of enhance nodes in BLS, which can make learning model more compacted. DCA-BLS is
compared with other prediction algorithms on public data sets and zinc froth flotation data. Experimental results show that
the proposed method has shorter training time and higher accuracy than other methods. |
|
|
|
|
|