引用本文: | 龙离军,王凤兰.任意相对阶下非线性切换系统的事件触发漏斗控制[J].控制理论与应用,2021,38(11):1717~1726.[点击复制] |
LONG LI-jun,WANG Feng-lan.Event-triggered funnel control for switched nonlinear systems with arbitrary relative degree[J].Control Theory and Technology,2021,38(11):1717~1726.[点击复制] |
|
任意相对阶下非线性切换系统的事件触发漏斗控制 |
Event-triggered funnel control for switched nonlinear systems with arbitrary relative degree |
摘要点击 3365 全文点击 858 投稿时间:2021-08-20 修订日期:2021-10-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10765 |
2021,38(11):1717-1726 |
中文关键词 非线性切换系统 漏斗控制 平均驻留时间 事件触发控制 |
英文关键词 switched nonlinear systems funnel control average dwell time event-triggered control |
基金项目 国家自然科学基金项目(62173075, 61773100), 辽宁省“兴辽英才计划”项目(XLYC1907043), 中央高校基本科研业务费项目(N2004015)资助. |
|
中文摘要 |
针对一类具有任意相对阶且带有部分非输入到状态稳定逆动态的非线性切换系统, 提出一种动态事件触
发漏斗跟踪控制方案. 首先, 引入一个虚拟输出将任意相对阶的非线性切换系统转换为相对阶为一的非线性切换系
统. 其次, 设计各子系统的事件触发漏斗控制器和切换的动态事件触发机制, 解决候选事件触发漏斗控制器和子系
统之间的异步切换问题, 所提方案消除已有文献中为所有子系统设计共同控制器带来的保守性. 在一类具有平均驻
留时间切换信号的作用下, 保证切换闭环系统的所有信号都是有界的, 且跟踪误差一直在预设的漏斗内演化, 并排
除采样中的奇诺现象. 最后, 一个仿真例子验证方案的实用性和有效性. |
英文摘要 |
In this paper, a dynamic event-triggered funnel tracking control scheme is proposed for a class of switched
nonlinear systems with arbitrary relative degree and partial non-input-to-state stability inverse dynamics. First of all, a
virtual output is introduced to convert an arbitrary relative degree switched nonlinear system into a switched nonlinear
systems with relative degree one. Second, by designing event-triggered funnel controller of individual subsystem and a
switching dynamic event-triggering mechanism, the problem of asynchronous switching between candidate event-triggered
funnel controllers and subsystems is addressed. The proposed scheme eliminates the conservativeness caused by the design
of a common controller for all subsystems in the existing literature. It is ensured that under a class of switching signals
with average dwell time, all signals in the switched closed-loop system are bounded, and the tracking error evolves within
a prescribed funnel all the time. Also, Zeno phenomenon of sampling is avoided. Finally, one example is utilized to verify
the applicability and effectiveness of the proposed control scheme. |
|
|
|
|
|