引用本文:李实,向峥嵘.切换非线性系统的输出反馈周期事件触发控制[J].控制理论与应用,2022,39(8):1377~1386.[点击复制]
LI Shi,XIANG Zheng-rong.Output feedback periodic event-triggered control for switched nonlinear systems[J].Control Theory and Technology,2022,39(8):1377~1386.[点击复制]
切换非线性系统的输出反馈周期事件触发控制
Output feedback periodic event-triggered control for switched nonlinear systems
摘要点击 3716  全文点击 653  投稿时间:2021-08-28  修订日期:2022-08-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.10811
  2022,39(8):1377-1386
中文关键词  非线性系统  切换系统  周期事件触发控制  输出反馈  任意切换  公共Lyapunov函数方法
英文关键词  nonlinear systems  switched systems  periodic event-triggered control  output feedback  arbitrary switchings  common Lyapunov function method
基金项目  国家自然科学基金项目(62103196, 61873128), 江苏省高等学校基础科学(自然科学)面上项目(21KJB510041), 南京师范大学引进人才科研启动 经费(184080H202B315)资助.
作者单位E-mail
李实 南京师范大学电气与自动化工程学院 lishilln@njnu.edu.cn 
向峥嵘* 南京理工大学自动化学院 xiangzr@njust.edu.cn 
中文摘要
      本文针对一类在任意切换信号作用下的切换非线性系统, 研究了其输出反馈周期事件触发控制问题. 所考 虑的非线性系统采用非严格反馈形式且含有未知时变控制系数. 在本文中, 仅利用采样时刻的系统输出. 为了估计 系统的不可量测的状态, 基于采样的系统输出构造了降维状态观测器. 为了减少通信资源的利用, 提出了一种新的 输出反馈周期事件触发策略, 该策略包含仅利用事件触发时刻的信息构造的输出反馈事件触发控制器以及仅在采 样时刻间歇性监测的离散事件触发机制. 通过选取可容许的采样周期及合适的公共Lyapunov函数, 证明了闭环系统 在任意切换下全局渐近稳定. 最后, 通过将本文中所给出的控制方案应用到数值算例中验证了其有效性.
英文摘要
      This paper investigates the output feedback periodic event-triggered control problem for a class of switched nonlinear systems under arbitrary switchings. The considered nonlinear system is in the nonstrict-feedback form and contains unknown time-varying control coefficients. In this paper, only the system output at sampling instants is utilized. In order to estimate the unmeasured system states, a reduced-order state observer is constructed based on the sampled system output. To reduce the usage of communication resources, a new output feedback periodic event-triggered control strategy, which includes an output feedback event-triggered controller that only uses event-sampling information and a discretetime event-triggering mechanism that is only intermittently monitored at sampling instants, is proposed. By choosing an allowable sampling period and a proper common Lyapunov function, it is proven that the closed-loop system is global asymptotically stable under arbitrary switchings. Finally, the proposed control scheme is applied to a numerical example to verify its effectiveness.