引用本文:廖亚楠,王业林,李萌,肖清泰,王华.基于CEEMDAN-RVM-EC的还原冶炼温度预报[J].控制理论与应用,2022,39(11):2177~2184.[点击复制]
LIAO Ya-nan,WANG Ye-lin,LI Meng,Xiao Qing-tai,WANG Hua.Prediction for the reduction smelting temperature based on CEEMDAN-RVM-EC[J].Control Theory and Technology,2022,39(11):2177~2184.[点击复制]
基于CEEMDAN-RVM-EC的还原冶炼温度预报
Prediction for the reduction smelting temperature based on CEEMDAN-RVM-EC
摘要点击 1355  全文点击 378  投稿时间:2021-08-31  修订日期:2022-10-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10823
  2022,39(11):2177-2184
中文关键词  机器学习  相关向量机  CEEMDAN  误差修正  铁水温度  预测
英文关键词  machine learning  relevance vector machine  CEEMDAN  error correction  hot metal temperature  prediction
基金项目  云南省教育厅科学研究基金项目(2021J0063), 云南省科技厅科技计划项目(202101AU070031), 云南省基础研究计划项目(202101BG070127)资助.
作者单位E-mail
廖亚楠 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室 Liaoyanan6@163.com 
王业林 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室  
李萌 中佛罗里达大学电气与计算机工程系  
肖清泰* 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室 qingtai.xiao@kust.edu.cn 
王华 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室  
中文摘要
      针对高炉炼铁还原过程中非线性和大时滞等特点造成温度监测难度大的困境, 提出一种融合数据分 解、机器学习和误差修正的高炉铁水温度组合预测新模型. 首先, 引入带自适应白噪声的完备集合经验模态分解方 法对铁水温度序列进行分解处理, 通过提取不同频率的规律特征, 使复杂的非线性序列转化为规律性较强的子序 列; 随后, 采用相关向量机对子序列进行学习, 充分挖掘铁水温度序列的信息, 获得精度较高的预测结果; 最后, 将对 铁水温度影响较大的硅含量和富氧率等相关因素作为辅助参数, 使用经主成分分析处理后的辅助参数序列对预测 结果进行修正, 提高模型的预测准确性. 结果表明: 相较于整合移动平均自回归模型等传统模型, 所提出的新模型 综合性能更优, 即平均绝对误差百分比减小53.57%, 铁水温度为±10 ?C范围内的预测命中率提高25%. 所提出的模 型为实现高炉温度实时精细化调控提供了理论支撑, 对保证炉况稳定、提升产品质量和降低冶炼能耗具有重大实 际意义.
英文摘要
      The reduction process of ironmaking is difficult to be controlled, which is caused by its characteristics of non-linearity and large time delay. Motivated by data decomposition, machine learning and error correction technologies, a novel hybrid prediction model is proposed for blast furnace hot metal temperature in this paper. Firstly, the complete ensemble empirical mode decomposition with adaptive noise is introduced to decompose the time series of hot metal temperature. The complicated non-linear time series are transformed into various sub-components by extracting the regular with different frequencies. Then, the relevance vector machine (RVM) is used to learn the rules of subsequences, and the information of the molten iron temperature sequence is fully mined to obtain a prediction result with high accuracy. Finally, the auxiliary parameter sequence processed by principal component analysis is used to modify the prediction results, improving the prediction accuracy of the model. The results show that compared with traditional models such as autoregressive integrated moving average model, the proposed model has better overall performance. The average absolute error percentage is reduced by 53.57%, and the predicted hit rate within the range of ±10?C for the hot metal temperature is increased by 25%. The model has important practical significance for ensuring stable furnace conditions, improving product quality and reducing smelting energy consumption.