引用本文: | 王宏伟,李昊哲.数据丢包下事件驱动的非线性多智能体迭代学习控制[J].控制理论与应用,2022,39(9):1688~1698.[点击复制] |
WANG Hong-wei,LI Hao-zhe.Event-triggered iterative learning control for nonlinear multi-agent systems with data random packet dropouts[J].Control Theory and Technology,2022,39(9):1688~1698.[点击复制] |
|
数据丢包下事件驱动的非线性多智能体迭代学习控制 |
Event-triggered iterative learning control for nonlinear multi-agent systems with data random packet dropouts |
摘要点击 2255 全文点击 602 投稿时间:2021-09-07 修订日期:2022-06-26 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.10849 |
2022,39(9):1688-1698 |
中文关键词 非线性多智能体系统 事件驱动通信 迭代学习控制 随机链路故障 一致性 |
英文关键词 nonlinear multi-agent systems event-triggering communication iterative learning control random link failures consensus |
基金项目 国家自然科学基金项目(61863034)资助. |
|
中文摘要 |
针对具有随机链路丢包、通信带宽受限以及模型未知的非线性多智能体一致性问题, 提出一种事件驱动的分布式无模型迭代学习控制策略. 首先建立系统的事件驱动决策机制, 给出基于输出信息的通信触发条件, 当该条件满足时触发事件, 各智能体间进行通信, 不满足条件时则不通信, 从而能够有效减少智能体间的大量通信和能量耗散. 其次, 使用伪偏导数将非线性系统沿迭代轴动态线性化, 借助邻居在前一步事件触发时的输出信息设计随机链路丢包补偿机制, 再结合事件驱动通信机制设计分布式控制协议. 在此基础上, 使用压缩映射原理分析算法收敛性能, 仿真结果表明随着迭代次数的增加, 事件触发间隔变大, 所有的智能体将完成对期望轨迹的跟踪. |
英文摘要 |
An even-driven distributed model-free iterative learning control strategy is proposed to solve the consensus problem of nonlinear multi-agent with random link packet loss, limited communication bandwidth and unknown dynamics. Firstly, the event-driven decision-making mechanism of the system is established, and the communication trigger condition based on output information is given. When the condition is met, the event is triggered, and the agents communicate, and when the condition is not met, the agents do not communicate, which can effectively reduce a large amount of communication and energy dissipation between agents. Secondly, the pseudo partial derivative is used to dynamically linearize the nonlinear system along the iterative axis, the random link packet loss compensation mechanism is designed with the help of the neighbor’s output information when the previous event is triggered, and then the distributed control protocol is designed combined with the event-driven communication mechanism. The convergence performance of the algorithm is analyzed by using the principle of compressed mapping. The simulation results show that with the increase of iteration times, the event trigger interval becomes larger, and all agents will complete the tracking of the desired trajectory. |
|
|
|
|
|