引用本文:周治威,刘为凯,钟小颖.自适应量化权重用于通信高效联邦学习[J].控制理论与应用,2022,39(10):1961~1968.[点击复制]
ZHOU Zhi-wei,LIU Wei-kai,ZHONG Xiao-ying.Adaptive quantization weights for communication-efficient federated learning[J].Control Theory and Technology,2022,39(10):1961~1968.[点击复制]
自适应量化权重用于通信高效联邦学习
Adaptive quantization weights for communication-efficient federated learning
摘要点击 1661  全文点击 480  投稿时间:2021-09-20  修订日期:2022-09-21
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10885
  2022,39(10):1961-1968
中文关键词  联邦学习  自适应量化  权重复用  通信成本
英文关键词  Federated Learning  Adaptive quantization  Weights of reuse  Cost of communication
基金项目  湖北省教育厅科学技术研究计划重点项目(D20131503)
作者单位E-mail
周治威 武汉工程大学 1728793033@qq.com 
刘为凯* 武汉工程大学 lwkhust@163.com 
钟小颖 武汉工程大学  
中文摘要
      针对联邦学习训练过程中通信资源有限的问题,本文提出了两种联邦学习算法:自适应量化权重算法和权重复用控制算法,前者对权重的位数进行压缩,减少通信过程中传输的比特数,算法在迭代过程中,自适应调整量化因子,不断减少量化误差;后者能阻止不必要的更新上传,从而减少上传的比特数.基于标准检测数据集Mnist和Cifar10,在CNN和MLP网络模型上做了仿真模拟,实验结果表明,与典型的联邦平均算法相比,提出的算法降低了75%以上的通信成本.
英文摘要
      Aiming at the problem of limited communication resources in federated learning and training, two federal learning algorithm is proposed in this paper, the adaptive quantification weighting algorithm and weighting multiplexing control algorithm, the former to compression of the median of weight, reducing the number of bits in the transmission in the communication process in iterative process, can be adjusted adaptive quantization factor, constantly reduce the quantization error; The latter prevents unnecessary updates from being uploaded, thereby reducing the number of uploaded bits. Based on the standard detection dataset Mnist and Cifar10, the simulation is carried out on CNN and MLP network models. The experimental results show that the proposed algorithm reduces the communication cost by more than 75% compared with the typical federated average algorithm.