引用本文:王小文,刘帅,王锦荣.基于迭代学习的多智能体系统分布式跟踪控制 (英文)[J].控制理论与应用,2022,39(10):1836~1844.[点击复制]
WANG Xiao-wen,LIU Shua,WANG Jin-rong.Iterative learning-based consensus tracking control for conformable multi-agent systems[J].Control Theory and Technology,2022,39(10):1836~1844.[点击复制]
基于迭代学习的多智能体系统分布式跟踪控制 (英文)
Iterative learning-based consensus tracking control for conformable multi-agent systems
摘要点击 1809  全文点击 453  投稿时间:2021-09-30  修订日期:2022-09-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10937
  2022,39(10):1836-1844
中文关键词  迭代学习控制  跟踪控制  具适导数  多智能体系统
英文关键词  Iterative learning control, consensus tracking control, conformable derivative, multi-agent systems
基金项目  国家自然科学基金( 62133008, 61821004),山东省自然科学基金(ZR2018MF021)
作者单位邮编
王小文 山东大学 250061
刘帅* 山东大学 250061
王锦荣 贵州大学 
中文摘要
      文章考虑了具适多智能体系统的分布式跟踪控制问题。通过设计带有初始学习机制的$P$型和$PD^{\alpha}$ 型迭代学习控制策略求解跟踪问题。具适导数具有良好的性质且可以刻画不同步长的实际数据采样情况。初始学习机制放松了初始值条件且提高了算法实现趋同跟踪的性能。在可重复操作环境和有向通信拓扑的假设下,提出了一种分布式迭代学习方案,通过重复同一轨迹的控制尝试和用跟踪误差修正不满意的控制信号来实现有限时间趋同。严格证明了随着迭代次数增加,提出的$P$型和$PD^{\alpha}$ 型迭代学习控制策略使得所有智能体能渐近跟踪上参考轨迹。两个代表性数值仿真验证了算法的有效性。
英文摘要
      This paper considers the consensus tracking control problem for conformable multi-agent systems with linear and nonlinear dynamics by designing $P$-type and $PD^{\alpha}$-type iterative learning control law with initial learning mechanisms. Conformable derivative is well-behaved and can characterize a different step in real data sampling. The initial learning mechanism relaxes the initial value condition and improves the performance of the protocol to achieve consensus tracking. A distributed iterative learning scheme is proposed to realize the finite-time consensus by repeating the control attempt of the same trajectory and correcting the unsatisfactory control signal with the tracking error under the assumption of repeatable operation environments as well as a directed communication topology. The asymptotical convergence of the proposed $P$-type and $PD^{\alpha}$-type distributed iterative learning protocol for all agents is strictly proved as the iteration number increases. Two numerical examples are simulated to verify the effectiveness of the protocols.