引用本文: | 唐振韬,梁荣钦,朱圆恒,赵冬斌.实时格斗游戏的智能决策方法[J].控制理论与应用,2022,39(6):969~985.[点击复制] |
TANG Zhen-tao,LIANG Rong-qin,ZHU Yuan-heng,ZHAO Dong-bin.Intelligent decision making approaches for real time fighting game[J].Control Theory and Technology,2022,39(6):969~985.[点击复制] |
|
实时格斗游戏的智能决策方法 |
Intelligent decision making approaches for real time fighting game |
摘要点击 2791 全文点击 863 投稿时间:2021-10-19 修订日期:2022-04-26 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.10995 |
2022,39(6):969-985 |
中文关键词 实时格斗游戏 统计前向规划 深度强化学习 性能因子 智能决策 |
英文关键词 real-time fighting game statistical forward planning deep reinforcement learning key metric intelligent decision |
基金项目 科技部科技创新2030“新一代人工智能”重大项目(2018AAA0101005), 中国科学院战略性先导研究项目(XDA27030400), 中国科学院青年创新促 进会项目(2021132)资助. |
|
中文摘要 |
格斗游戏作为实时双人零和对抗博弈的代表性问题, 具有实时对抗和快速响应的重要研究特性. 相应针对
性方法的提出有效反映了游戏人工智能领域的重要研究进展及发展方向. 本文以格斗游戏人工智能竞赛作为研究
背景, 将智能决策方法分为启发式规则型、统计前向规划型与深度强化学习型三大类型, 介绍相应的智能决策方法
在实时格斗游戏中的研究进展. 为分析格斗游戏智能决策方法的表现性能, 本文提出了胜率、剩余血量、执行速
率、优势性和伤害性的5个性能因子, 系统分析智能决策方法的性能优势及不足. 最后, 对未来的在格斗游戏中研究
发展趋势进行展望. |
英文摘要 |
Fighting game is a classical real-time two player zero sum game, which has the obvious characteristics of
real-time confrontation and extremely rapid decision response. Research and study conducted on this platform reflects the
important research progress and development direction in the field of game artificial intelligence. In this paper, we focus
on the application and development of intelligent decision-making in real-time fighting games. Methods that are applied in
fighting games are categorized into three approaches, including heuristic rules, deep reinforcement learning, and statistical
forward planning. Their corresponding process and development in the field of real-time fighting games is deeply studied.
In order to systematically show the superiority and inferiority of different methods, five key metrics are proposed to analyze
their performance, including win rate, remaining hit points, speed of wining, advantages of wining, and damage to the
enemy. After the systematic analysis, the potential directions of intelligent decision-making in real-time fighting games are
concluded for future research. |
|
|
|
|
|