引用本文:谭文,韩文杰,户杏启.线性自抗扰控制的对偶性分析[J].控制理论与应用,2023,40(6):1005~1013.[点击复制]
TAN Wen,HAN Wen-jie,HU Xing-qi.Duality analysis of linear active disturbance rejection control[J].Control Theory and Technology,2023,40(6):1005~1013.[点击复制]
线性自抗扰控制的对偶性分析
Duality analysis of linear active disturbance rejection control
摘要点击 1924  全文点击 587  投稿时间:2021-10-24  修订日期:2023-05-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.11015
  2023,40(6):1005-1013
中文关键词  自抗扰控制  PID控制  对偶性  状态空间
英文关键词  active disturbance rejection control  PID control  duality  state-space
基金项目  国家自然科学基金项目(61573138)
作者单位E-mail
谭文* 华北电力大学控制与计算机工程学院 wtan@ieee.org 
韩文杰 华北电力大学控制与计算机工程学院 13253151532@163.com 
户杏启 华北电力大学控制与计算机工程学院 hxq_huxingqi@163.com 
中文摘要
      本文对线性自抗扰控制的结构进行了分析, 证明了线性自抗扰控制结构实际上是一种基于观测器的比 例–积分–微分(PID)结构的对偶. 该结构中状态反馈就是常规(高阶)PID控制, 而PID控制中输出的积分和各阶导数 由一不依赖于模型的扩张观测器获得. 这种对偶性表明PID控制和线性自抗扰控制采用了同一个标准系统作为被 控对象, 但从不同的角度进行处理. 理论及仿真表明, 线性自抗扰控制是常规PID控制的扩展, 克服了常规PID控制 受测量噪声影响的问题, 为高阶PID的应用提供了实际可行的实现.
英文摘要
      Structural analysis of linear active disturbance rejection control (LADRC) is investigated in this paper. It is shown that LADRC is the dual of an observer-based proportional-integral-derivative (PID) control structure, where the state feedback is the (high-order) PID control, and the integral and derivatives of the plant output are obtained via a model-independent extended state observer. The duality reveals that PID and LADRC are using the same canonical system as the controlled plant but treating it with different viewpoints. Theory and simulation results show that LADRC is an extension of the conventional PID structure. It can reduce the effect of sensor noise in the conventional PID and provides a practical realization of high-order PID control.