引用本文:李应森,陈明,王焕清,彭开香.非线性系统有限时间自适应动态面容错控制[J].控制理论与应用,2022,39(8):1489~1496.[点击复制]
LI Ying-sen,CHEN Ming,WANG Huan-qing,PENG Kai-xiang.Finite-time adaptive dynamic surface fault-tolerant control for nonlinear systems[J].Control Theory and Technology,2022,39(8):1489~1496.[点击复制]
非线性系统有限时间自适应动态面容错控制
Finite-time adaptive dynamic surface fault-tolerant control for nonlinear systems
摘要点击 1941  全文点击 694  投稿时间:2021-10-28  修订日期:2022-09-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.11039
  2022,39(8):1489-1496
中文关键词  严格反馈非线性系统  传感器故障  有限时间控制  动态面控制  容错控制
英文关键词  strict-feedback nonlinear systems  sensor faults  finite-time control  dynamic surface control  fault-tolerant control
基金项目  国家自然科学基金项目(61873024, U21A20483), 辽宁省教育厅基金项目(2019LNJC09)资助.
作者单位邮编
李应森 辽宁科技大学 114051
陈明 辽宁科技大学 
王焕清* 渤海大学 121013
彭开香 北京科技大学 
中文摘要
      针对具有传感器故障的一类严格反馈非线性系统, 提出一种有限时间自适应动态面容错控制策略. 考虑的 传感器故障包括: 固定偏差故障、漂移故障、精度下降及失效故障. 以反步法为主要设计依据, 利用模糊逻辑系统处 理模型中的未知函数. 该控制策略的显著优势在于结合有限时间理论、容错控制、模糊逻辑控制及动态面控制, 使 得系统无论发生故障与否, 均使得系统在原点处是半全局实际有限时间稳定, 同时保证系统的实际输出信号在有限 时间内跟踪期望信号, 且跟踪误差收敛于坐标原点的小邻域内. 另外, 通过采用动态面控制技术克服了传统反步法 中的计算复杂问题. 最后, 仿真算例证明了该设计方案的有效性.
英文摘要
      A finite-time adaptive dynamic surface fault-tolerant control strategy is proposed for a class of strict-feedback nonlinear systems with sensor faults. The sensor faults considered include: fixed deviation fault, drift fault, precision decline and failure fault. Based on the backstepping method, the fuzzy logic systems are used to deal with the unknown functions in the model. The significant advantage of our proposed strategy is to ensure that the system is semi-globally practically finite-time stable at the origin regardless of failures by using finite-time theory, fault-tolerant control, fuzzy logic control and dynamic surface control, and the actual output signal of the system is guaranteed to track a desired signal in finite time, and the tracking error converges to a small neighborhood of the coordinate origin. Moreover, the complex calculation problem, which exists in the traditional backstepping method, is overcome by using the dynamic surface control. Finally, the effectiveness of the proposed scheme is proved by a simulation example.