引用本文:杨春雨,陈佳怡,张鑫,唐超权.矿用卡车路面自适应模型预测轨迹跟踪控制[J].控制理论与应用,2023,40(6):1061~1068.[点击复制]
YANG Chun-yu,CHEN Jia-yi,ZHANG Xin,TANG Chao-quan.Mine truck trajectory tracking based on road adaptive model predictive control[J].Control Theory and Technology,2023,40(6):1061~1068.[点击复制]
矿用卡车路面自适应模型预测轨迹跟踪控制
Mine truck trajectory tracking based on road adaptive model predictive control
摘要点击 1921  全文点击 617  投稿时间:2022-02-21  修订日期:2023-06-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.20129
  2023,40(6):1061-1068
中文关键词  矿用卡车  轨迹跟踪  路面附着系数估计  自适应预测控制  跟踪控制
英文关键词  mine trucks  trajectory tracking  road adhesion coefficient estimation  adaptive predictive control  trackion control
基金项目  国家自然科学基金项目(61873272, 62073328), 江苏省自然科学基金项目(BK20200086, BK20200631)
作者单位E-mail
杨春雨* 中国矿业大学 chunyuyang@cumt.edu.cn 
陈佳怡 中国矿业大学 chenjiayi@cumt.edu.cn 
张鑫 中国矿业大学 ZhangXin_1994@126.com 
唐超权 中国矿业大学 tangchaoquan@cumt.edu.cn 
中文摘要
      针对矿区道路环境突变对无人矿用卡车无人驾驶的挑战, 本文研究了路面自适应模型预测轨迹跟踪控制 问题. 首先, 根据矿区常用矿卡车型及环境突变特点分别建立矿卡动力学模型和矿区道路环境模型; 其次, 提出矿卡 路面自适应模型预测轨迹跟踪控制框架; 然后, 引入预设附着系数库, 提出基于自主切换策略的最小二乘参数估计 方法以应对突变工况做出合理递推; 最后, 提出矿卡路面自适应模型预测轨迹跟踪控制方法. 仿真表明, 所提方法 比传统自适应模型预测控制方法轨迹跟踪精度更高, 可以充分考虑道路附着条件突变的矿区道路工况, 自适应地保 证矿卡的操纵稳定性.
英文摘要
      In order to eliminate the influence of road parameters uncertainty in mine truck trajectory tracking, this paper proposes a road-adaptive trajectory tracking controller based on the adaptive control and model predictive control. Firstly, the dynamics model of the mining truck and the environmental model of the mining road are established respectively according to the common mining trucks’ type and the of the sudden change of the environment. Secondly, the framework of mine truck trajectory tracking based on the road adaptive model predictive control is proposed. Thirdly, a least-squares parameter estimation method based on the autonomous switching strategy is proposed to make reasonable recursion for sudden-changed road conditions. Finally, a mine truck trajectory tracking based on the road adaptive model predictive control is proposed. The simulation results show that the proposed method has higher trajectory tracking accuracy than the traditional adaptive model predictive control method. The method can fully consider the road conditions in mining areas with uncertainty parameters and sudden changes, and adaptively ensures the handling stability of the mining truck.