引用本文:秦瑶,廉飞宇,潘泉,张元.霉变小麦气相色谱–离子迁移谱的宽度学习检测模型[J].控制理论与应用,2023,40(9):1585~1594.[点击复制]
QIN Yao,LIAN Fei-yu,PAN Quan,ZHANG Yuan.A broad learning detection model on gas chromatography-ion migration spectrum of mildew wheat[J].Control Theory and Technology,2023,40(9):1585~1594.[点击复制]
霉变小麦气相色谱–离子迁移谱的宽度学习检测模型
A broad learning detection model on gas chromatography-ion migration spectrum of mildew wheat
摘要点击 1237  全文点击 408  投稿时间:2022-02-24  修订日期:2022-08-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.20133
  2023,40(9):1585-1594
中文关键词  霉变小麦  气相色谱–离子迁移谱  指纹图谱  宽度学习  空间注意力
英文关键词  mildew wheat  gas chromatography-ion mobility spectrum  fingerprint spectrum  broad learning  spatial attention mechanism
基金项目  国家自然科学基金项目(52003076), 粮食信息处理与控制教育部重点实验室开放基金项目(KFJJ–2018–102), 河南省高校青年骨干教师培养计划项 目(2021GGJS065), 河南省高等学校重点科研项目(22A510014), 河南工业大学自科创新基金支持计划项目(2022ZKCJ02), 河南工业大学青年骨干 教师培育计划项目
作者单位E-mail
秦瑶 河南工业大学 eqinyao@163.com 
廉飞宇 河南工业大学  
潘泉 西北工业大学  
张元* 河南工业大学 emhaut@163.com 
中文摘要
      常用的小麦霉变检测方法存在检测程序复杂、环境适应性差等问题. 本文针对这一现状, 将具有高灵敏度的气相色谱–离子迁移谱(GC-IMS)应用于小麦的早期霉变检测, 对不同霉变程度的小麦样品进行GC-IMS测试并采用宽度学习模型(BLN)进行模式分类. 为了提高宽度学习模型的分类精度, 在模型中引入了空间注意力机制(SAM),通过使用节点的特征信息和结构信息计算注意力权重, 提取更重要的特征信息. 实验结果表明, 与现有的深度学习模型相比, 本文提出的模型在训练时间上大大减少, 在样本较少的情况下, 对霉变小麦早期识别的准确率(AUC)也得到了相应提高, 有效地解决了过拟合问题. 实验也证明了GC-IMS结合BLN-SAM模型的方法在小麦霉变早期检测中的有效性
英文摘要
      The commonly used methods for wheat mildew detection have some problems such as complicated detection procedures and poor environmental adaptability. Because of this situation, the high-sensitivity gas chromatography-ion migration spectrum (GC-IMS) was applied to detect early mildew of wheat, and the wheat samples with different mildew degrees were tested by using the GC-IMS and classified by using a broad learning model (BLN). To improve the classifi-cation accuracy of the broad learning model, a spatial attention mechanism (SAM) is introduced into the model, and the feature information and structure information of nodes are used to calculate attention weight and extract more important feature information. Experimental results show that compared with existing deep learning models, the training time of the proposed model is greatly reduced. In the case of a small number of samples, the early recognition accuracy (AUC) of mildew wheat was also improved, which effectively solved the problem of over-fitting. The experiment also proved the effectiveness of the GC-IMS combined with the BLN-SAM model in the early detection of wheat mildew.