引用本文:张兆鹏,何慰,梁潇,韩建达,方勇纯.基于分层运动分解的飞行机械臂视觉伺服控制[J].控制理论与应用,2024,41(5):808~816.[点击复制]
ZHANG Zhao-peng,HE Wei,LIANG Xiao,HAN Jian-da,FANG Yong-chun.Visual servoing control for aerial manipulator via hierarchical motion decomposition[J].Control Theory and Technology,2024,41(5):808~816.[点击复制]
基于分层运动分解的飞行机械臂视觉伺服控制
Visual servoing control for aerial manipulator via hierarchical motion decomposition
摘要点击 4159  全文点击 356  投稿时间:2022-03-26  修订日期:2024-02-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20214
  2024,41(5):808-816
中文关键词  多旋翼无人机  飞行机械臂  视觉伺服控制
英文关键词  multirotor UAV  aerial manipulator  visual servoing control
基金项目  国家自然科学基金项目(62273187, 62233011, 91848203), 天津市青年人才托举工程项目(TJSQNTJ–2020–21), 先进计算与关键软件海河实验 室项目(22HHXCJC00003)
作者单位E-mail
张兆鹏 南开大学 zhangzp@mail.nankai.edu.cn 
何慰 南开大学  
梁潇* 南开大学 liangx@nankai.edu.cn 
韩建达 南开大学  
方勇纯 南开大学  
中文摘要
      飞行机械臂系统具有主动作业能力, 通过搭载视觉传感器感知周围环境, 系统的自主能力将进一步提高.然而, 考虑到无人机的欠驱动和整个系统的非线性特性, 飞行机械臂系统的视觉伺服控制仍然是一项具有挑战性的工作. 本文在充分考虑机械臂对无人机的力/力矩作用后, 提出了一种基于分层运动分解的飞行机械臂视觉伺服控制方案. 首先, 对飞行机械臂系统的运动学和动力学模型进行分析. 然后, 根据所得的相机运动学模型, 通过基于图像的视觉伺服控制获得相机的期望速度, 进而制定无人机和机械臂的速度分配策略. 在考虑机械臂运动时对无人机产生的力/力矩影响, 设计了底层的飞行控制器. 最后, 在与现有方法的仿真对比中可以看出, 所提方法具有良好的控制性能, 对图像特征点位置的不确定性及图像噪声也表现了较好的鲁棒性
英文摘要
      The aerial manipulator system has active operation capability, and the autonomous level of the system would be further improved if the aerial manipulator could perceive the surrounding environment by visual sensors. However, considering the underactuation of the multirotor and the nonlinear property of the overall system, visual servoing control of aerial manipulator systems is still a challenging work. This paper proposes a hierarchical motion decomposition based visual servoing control scheme for aerial manipulator sytems with full consideration of the force/torque effect exerted by the robotic arm on the fuselage of the unmanned aerial vehicle (UAV). Firstly, the kinematics and dynamics model of the aerial manipulator system is analyzed. Then, based on the obtained camera’s kinematics, the desired speed of the camera is obtained through image-based visual servo control, and the speed allocation strategy of the UAV and the manipulator is formulated. After considering the influence of the effect generated by the robotic arm on the UAV, the low-level flight controller is provided. Finally, compared with the existing method, the proposed method has better control performance and also presents good robustness against the uncertainty of image feature points position and image noise.