引用本文:宋秀兰,周文乐,徐晨辉,何德峰.整车主动悬架系统分布式滚动时域一致性估计[J].控制理论与应用,2023,40(8):1488~1496.[点击复制]
SONG Xiu-lan,ZHOU Wen-le,XU Chen-hui,HE De-feng.Distributed moving horizon consensus estimation of full-car active-suspension systems[J].Control Theory and Technology,2023,40(8):1488~1496.[点击复制]
整车主动悬架系统分布式滚动时域一致性估计
Distributed moving horizon consensus estimation of full-car active-suspension systems
摘要点击 2695  全文点击 385  投稿时间:2022-04-05  修订日期:2023-07-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.20240
  2023,40(8):1488-1496
中文关键词  整车主动悬架  分布式状态估计  滚动时域估计  一致性
英文关键词  full-car active suspension  distributed state estimation  moving horizon estimation  consensus
基金项目  国家自然科学基金项目(62173303), 浙江省公益性技术应用研究项目(LGF22F030013)
作者单位E-mail
宋秀兰* 浙江工业大学 信息工程学院 songxl2008@zjut.edu.cn 
周文乐 浙江工业大学 信息工程学院  
徐晨辉 浙江工业大学 信息工程学院  
何德峰 浙江工业大学 信息工程学院  
中文摘要
      考虑整车主动悬架系统的约束状态估计问题, 本文提出基于一致性原理的分布式滚动时域估计(DMHE)算法. 首先, 为了降低状态估计过程中的计算量, 将整车主动悬架系统分解为若干降阶子系统. 其次, 为提高分布式状态估计效果, 采用滚动时域估计(MHE)方法处理主动悬架系统的状态和噪声约束. 考虑子系统与邻居估计状态的相关性, 在采样间隔中执行多次一致性原理实现主动悬架系统状态的信息融合, 进一步建立了算法的稳定性充分条件. 最后, 通过对比仿真实验验证算法的有效性和优越性
英文摘要
      A distributed moving horizon estimation (DMHE) algorithm based on the consensus principle was proposed for constrained state estimation of full-car active-suspension systems. Firstly, to reduce the calculation demand in the state estimation, the vehicle active suspension system is decomposed into several subsystems with reduced order. Secondly, to improve the effect of distributed state estimation, the moving horizon estimation (MHE) method is used to deal with the state and noise constraints of the active-suspension system. Considering the correlation between the subsystem and its neighbor estimation states, the information fusion of states of the active-suspension system is realized by applying the consensus principle several times in a sampling interval. The sufficient conditions for ensuring stability of the algorithm are further established. Finally, the effectiveness and the superiority of the algorithm are verified by some comparison simulation experiments.