引用本文: | 聂卓赟,聂方明,陈一逢,詹瑜坤,罗继亮.带宽化调节下的抗扰PID退饱和控制方法[J].控制理论与应用,2024,41(1):83~89.[点击复制] |
NIE Zhuo-yun,NIE Fang-ming,CHEN Yi-feng,ZHAN Yu-kun,LUO Ji-liang.Disturbance rejection PID anti-windup control under bandwidth tuning[J].Control Theory and Technology,2024,41(1):83~89.[点击复制] |
|
带宽化调节下的抗扰PID退饱和控制方法 |
Disturbance rejection PID anti-windup control under bandwidth tuning |
摘要点击 1430 全文点击 2132 投稿时间:2022-04-11 修订日期:2023-10-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.20258 |
2024,41(1):83-89 |
中文关键词 退饱和控制 退饱和带宽 抗扰PID |
英文关键词 anti-windup control anti-windup bandwidth disturbance rejection PID |
基金项目 国家自然科学基金项目(61973130), 福建省自然科学基金项目(2019J01053, 2023J01110)资助. |
|
中文摘要 |
比例–积分–微分(PID)控制的抗饱和设计是一类经典非线性控制问题, 理论研究丰富, 但工程中广泛使用的
仍是积分退饱和这类简易策略. 究其原因, 现有理论方法过于依赖系统模型和状态空间理论, 稳定性条件与调参机
制之间关系复杂. 本文基于经典退饱和控制结构, 首次阐述了“退饱和带宽”概念及退饱和参数调节机理, 在此基础
上讨论了两类低阶退饱和补偿器的带宽化设计方法. 在抗扰PID反馈控制下, 结合小增益定理得到退饱和控制的稳
定性条件, 给出控制参数与退饱和带宽之间的调节关系, 实现退饱和控制的带宽化整定. 最后, 通过数值仿真验证
了所提方法的有效性. |
英文摘要 |
The design of proportional integral derivative(PID) anti-windup control is a classical nonlinear control problem
with rich theoretical research, but the dominant method used in the engineering is still a simple integral anti-windup
control scheme. The reason is that the existing theoretical methods heavily rely on the system model and state-space theory,
which complicates the relationship between stability condition and parameter tuning. Based on the classical anti-windup
control scheme, this paper proposes the concept of “anti-windup bandwidth” for the first time to reveal the parameters’ tuning
mechanism for anti-windup control. Meanwhile, the design of two low-order anti-windup compensators are developed
based on the bandwidth tuning mechanism. Under the disturbance rejection PID feedback control, the small gain theorem
is used to derive the stability condition with intuitive stabilization relationship between the control bandwidth and antiwindup
bandwidth, which concludes as the bandwidth tuning method for anti-windup control. Finally, the effectiveness of
the proposed method is verified by numerical simulation. |
|
|
|
|
|