引用本文: | 陈斌,汤凯峰,高大枘,王立文.基于LADRC的跑道积冰主动探测装置温度精准控制[J].控制理论与应用,2024,41(9):1610~1618.[点击复制] |
CHEN Bin,TANG Kai-feng,GAO Dao-rui,WANG Li-wen.Accurate temperature control of runway ice active detection device based on LADRC[J].Control Theory and Technology,2024,41(9):1610~1618.[点击复制] |
|
基于LADRC的跑道积冰主动探测装置温度精准控制 |
Accurate temperature control of runway ice active detection device based on LADRC |
摘要点击 3301 全文点击 38 投稿时间:2022-04-21 修订日期:2023-05-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20305 |
2024,41(9):1610-1618 |
中文关键词 积冰主动探测 热电制冷器 精准温控 线性自抗扰控制 |
英文关键词 active ice detection thermoelectric cooler (TEC) accurate temperature control LADRC |
基金项目 国家自然科学基金–民航联合研究基金项目(U1933107)资助. |
|
中文摘要 |
对跑道表面积冰主动进行探测, 是保障航班安全运行的重要手段, 本文针对目前积冰检测多为被动的积冰后检测的弊端, 提出一种以热电制冷器为核心的跑道积冰主动探测装置, 超前模拟跑道小范围温度条件和积冰状况, 实现跑道积冰主动探测. 数值分析表明, 装置温度控制易受运行过程中内部参数和外部环境扰动的影响, 为实现精准温控, 提出一种基于线性自抗扰控制(LADRC)的温控方法, 并利用时变增益方法改进扩张状态观测器(ESO).仿真结果表明LADRC控制有更好的抗干扰能力, 总扰动下的均方误差(MSE)较PID和非线性PID(NLPID)控制分别减少了57.22%和55.77%. 低温实验箱及室外低温环境下实验结果表明, 装置能够快速响应达到目标温度, 稳态误差为0.05 ?C, 能够满足积冰状况模拟及积冰主动探测的需求. |
英文摘要 |
The active detection of ice on the runway surface is an important tool to ensure the safe operation of flights; to address the drawbacks of the current ice detection, which is mostly a passive post-ice detection, a runway ice active detection device was proposed with a thermoelectric cooler as the core, to simulate the runway temperature and ice conditions in a small area in advance to achieve runway ice prediction. Numerical analysis showed that the temperature control of the device is susceptible to the influence of internal parameters and external environmental disturbances during operation. To achieve accurate temperature control, a temperature control method based on linear active disturbance rejection controller (LADRC) was proposed, and a time-varying gain method was used to improve the expansion state observer (ESO). Simulation results showed that LADRC control has better immunity to disturbances than PID and NLPID, with MSE reduced by 57.22% and 55.77% under total disturbances, respectively. Experimental results in the low temperature chamber and outdoor low temperature environment showed that the device can respond quickly to reach the target temperature with a steady state error of 0.05 ?C; it can meet the needs of icing condition simulation and active ice detection. |
|
|
|
|
|