引用本文:张昭昭,朱应钦,余文.具有双储层结构的动态误差补偿回声状态网络[J].控制理论与应用,2024,41(3):385~395.[点击复制]
ZHANG Zhao-zhao,ZHU Ying-qin,YU Wen.A new echo state network with a double reservoir compensates for dynamic error[J].Control Theory and Technology,2024,41(3):385~395.[点击复制]
具有双储层结构的动态误差补偿回声状态网络
A new echo state network with a double reservoir compensates for dynamic error
摘要点击 3033  全文点击 272  投稿时间:2022-06-17  修订日期:2024-02-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20539
  2024,41(3):385-395
中文关键词  回声状态网络  高阶非线性复杂模型  补偿回声状态网络  多阶振荡器
英文关键词  echo state network  high order nonlinear complex model  compensating echo state network  multiple superimposed oscillator
基金项目  陕西省自然科学基础研究计划陕煤联合基金资助项目(2019JLZ–08), 陕西省自然科学基础研究计划资助项目(2020JM–522, 2021JM–396)资助.
作者单位E-mail
张昭昭 西安科技大学  
朱应钦* 西安科技大学 1781484849@qq.com 
余文 墨西哥国立理工学院  
中文摘要
      针对传统回声状态网络难以有效应对高阶非线性复杂模型问题, 本文在理论分析的基础上提出了一种双 储层结构的误差补偿回声状态网络, 并设计了该网络的学习算法. 该网络由计算层和补偿层构成, 计算层主要承担 拟合任务, 补偿层则作为状态跟随器, 实时补偿由于计算层对期望方差估计不足而导致的幅值偏差. 对多阶振荡器 和真实高阶非线性数据集的实验结果表明, 本文所提网络结构较常规网络具有更高的稳定性和泛化性能, 尤其对高 阶非线性复杂模型的预测精度大幅度提升.
英文摘要
      The traditional echo state network is challenging to deal with the high-order nonlinear complex model effectively. We proposed an error trace reservoir computing and designed the optimal network algorithm. This new reservoir computing structure consists of a computing layer and a compensation layer. The computing layer mainly undertakes the fitting task, and the compensation layer acts as an error trace function. Because the computing layer always has an insufficient variance estimation, it will lead to unstable neural network prediction. Thus, we proposed the compensation layer to trace neural network error in real-time. The numerical experiments on modeling the multiple superimposed oscillators and nonlinear data sets demonstrate that error trace reservoir structure has higher stability and generalization performance than the conventional network, especially in the high order nonlinear complex models.