引用本文:王东,邱超超,贺威,王伟.双臂系统协同控制研究综述: 从经典到基于学习的算法[J].控制理论与应用,2024,41(11):1951~1964.[点击复制]
WANG Dong,QIU Chao-chao,HE Wei,WANG Wei.From classic to learning-based algorithms: A survey of cooperative control for dual-arm systems[J].Control Theory and Technology,2024,41(11):1951~1964.[点击复制]
双臂系统协同控制研究综述: 从经典到基于学习的算法
From classic to learning-based algorithms: A survey of cooperative control for dual-arm systems
摘要点击 447  全文点击 109  投稿时间:2022-07-02  修订日期:2024-02-26
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20586
  2024,41(11):1951-1964
中文关键词  双臂系统  仿人机器人  协同控制  智能控制  强化学习
英文关键词  dual-arm system  humanoid robot  cooperative control  intelligent control  reinforcement learning
基金项目  国家重点研发计划项目(2019YFE0197700), 国家自然科学基金项目(61973050, 62173061), 辽宁省兴辽英才计划项目(XLYC2007010)资助.
作者单位E-mail
王东* 大连理工大学 dwang@dlut.edu.cn 
邱超超 大连理工大学  
贺威 北京科技大学  
王伟 大连理工大学  
中文摘要
      双臂系统的协同控制技术在机器人领域发挥重要的作用, 它可以协助人类在工业生产、家庭服务、太空及深海等非结构化环境完成复杂危险的任务. 然而, 双臂机器人是一个强耦合、高度非线性和不确定性系统, 其协同控制问题是一个具有挑战性的课题. 本综述首先回顾了双臂系统的发展历程. 其次对该系统的结构、建模、控制及其应用进行介绍. 特别地, 详细归纳了双臂系统的协同控制方法: 如协同搬运时的主从控制、力/位混合控制和阻抗控制等经典方法、基于神经网络和模糊系统的智能控制方法和基于强化学习的数据驱动方法在机器人控制取得的最新进展. 最后, 展望了双臂系统的未来发展趋势.
英文摘要
      The cooperative control of dual-arm systems (DAS) is a technology that plays an important role in the field of robotics. It can assist human beings to perform complex and dangerous tasks in unstructured environments such as industrial production, domestic life, space and underwater. However, the aforementioned technology is a challenging topic due to difficulties in the design of controllers, which is caused by strong coupling, high nonlinearity and uncertainties. In this survey article, we first review the development of dual-arm systems, and then give an introduction of the structure, modelling, control and application of the systems. In particular, the cooperative control method of the dual-arm systems is concluded in detail: first, classic methods such as master-slave control, force/position hybrid control and impedance control during collaborative manipulation; and second, intelligent control method based on neural network and fuzzy system; third, the latest progress of data-driven methods based on reinforcement learning in robot control. Finally, the future development trends of dual-arm systems are envisioned.