引用本文: | 王建成,李强亚,刘涛,谭永红,阎帅.梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模[J].控制理论与应用,2024,41(9):1692~1697.[点击复制] |
WANG Jian-cheng,LI Qiang-ya,LIU Tao,TAN Yong-hong,YAN Shuai.Hysteresis characteristics modeling of piezoelectric actuator by gradient boosting least-squares support vector regression[J].Control Theory and Technology,2024,41(9):1692~1697.[点击复制] |
|
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模 |
Hysteresis characteristics modeling of piezoelectric actuator by gradient boosting least-squares support vector regression |
摘要点击 1803 全文点击 26 投稿时间:2022-08-10 修订日期:2024-05-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20713 |
2024,41(9):1692-1697 |
中文关键词 压电执行器 磁滞效应 磁滞算子 最小二乘支持向量机 可保证收敛粒子群算法 梯度提升 |
英文关键词 piezoelectric actuator hysteresis effect hysteretic operator least-squares support vector machine guaranteed convergence particle swarm optimization gradient boosting |
基金项目 国家自然科学基金项目(62327807, 62361136585), 教育部重点基地平台科研专题项目(DUT21LAB113)资助. |
|
中文摘要 |
针对用于精密运动定位的压电执行器具有磁滞效应的问题, 本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法. 首先, 通过引入磁滞算子构造拓展的输入空间, 将磁滞的多值映射转换为一对一映射. 然后, 建立基于GB-LSSVR的磁滞模型, 设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化. 最后, 将所提出方法用于实际预测一个压电执行器的位移. 结果表明, 该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法, 能得到更加准确的结果. |
英文摘要 |
Concerning the problem of hysteresis effect related to piezoelectric actuators used for precise motion positioning, a modeling method is proposed based on the gradient boosting least-squares support vector regression (GB-LSSVR). Firstly, an expanded input space is constructed by introducing a hysteretic operator, such that the multi-valued mapping of hysteresis is transformed into a one-to-one mapping. Then the hysteresis model is established based on the GB-LSSVR, of which the parameters are optimized by the guaranteed convergence particle swarm optimization (GCPSO) algorithm. Finally, the proposed method is applied to practically predict the displacement of a piezoelectric actuator. The results show that the proposed method could obtain more accurate result compared to the classical algorithms of least-squares support vector regression and truncated least-squares support vector regression. |
|
|
|
|
|