引用本文: | 孟亦真,黄静,周绍辉,周彬,朱康武.输入受限下的超紧密航天器编队避撞相对位置强化学习控制[J].控制理论与应用,2025,42(4):659~668.[点击复制] |
Meng Yi-Zhen,Huang Jing,Zhou Shao-hui,Zhou Bin,Zhu Kang-wu.Reinforcement learning control of collision avoidance for ultra-close formation of spacecraft with input constraints[J].Control Theory & Applications,2025,42(4):659~668.[点击复制] |
|
输入受限下的超紧密航天器编队避撞相对位置强化学习控制 |
Reinforcement learning control of collision avoidance for ultra-close formation of spacecraft with input constraints |
摘要点击 8 全文点击 0 投稿时间:2022-09-08 修订日期:2025-03-03 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20792 |
2025,42(4):659-668 |
中文关键词 航天器编队 避撞 强化学习 死区效应 固定时间约束 |
英文关键词 spacecraft formation collision avoidance reinforcement learning control dead-zone effect fixed time constraint |
基金项目 国家重点研发计划项目(2022YFB3902700,2022YFB3902702), 空间目标感知全国重点实验室资助. |
|
中文摘要 |
考虑具有外界干扰、避撞约束和固定时间约束的近地轨道超紧密航天器编队的重构控制问题,本文提出一种多
约束条件下的考虑执行机构死区效应的航天器编队鲁棒控制方法.首先,建立近地轨道完整的编队航天器相对位置非线
性动力学方程和执行机构死区动态响应模型;其次,根据状态约束条件设计编队相对位置约束机制,基于反步法和强化
学习评判–动作网络,提出防避撞约束和固定时间约束的鲁棒控制律,进一步考虑到执行机构电推力器的死区效应,基
于强化学习的动作网络来近似死区特性,本文通过最小化评判网络代价函数来解决执行机构死区效应对控制精度带来
的影响,并应用Lyapunov稳定性定理证明其闭环系统的一致有界性;最后,在MATLAB/Simulink平台上进行仿真验证,
结果表明所提出方法的有效性. |
英文摘要 |
Considering the control problem of reconstructing the ultra-tight formation of near-Earth orbit spacecraft in
the presence of external disturbances, collision avoidance constraints, and fixed-time constraints, this study presents a robust
control method for spacecraft formation that accounts for the dead-zone effect of the actuator under multiple constraint
conditions. Firstly, we establish the nonlinear dynamic equations governing the relative positions of the spacecraft in
the complete near-Earth orbit formation, as well as the dynamic response model capturing the dead-zone effect of the
actuator. Secondly, we design a constraint mechanism for the relative positions of the formation based on state constraints.
Robust control laws, employing a combination of backstepping and a reinforcement learning actor-critic network, are
proposed to address collision avoidance constraints and fixed-time constraints. Additionally, we approximate the dead
zone characteristics of the actuator’s thrusters by leveraging a reinforcement learning actor network. To mitigate the impact
of the dead-zone effect on control accuracy, we minimize the cost function of the actor network. The Lyapunov stability
theorem is employed to demonstrate the uniformly boundedness of the closed-loop system. Finally, we conduct simulation
verification on the MATLAB/Simulink platform, and the results substantiate the effectiveness of the proposed method. |
|
|
|
|
|