引用本文:宋金波,董宏丽,申雨轩,侯男.重放攻击下多智能体系统H∞一致性PID控制[J].控制理论与应用,2024,41(4):658~666.[点击复制]
SONG Jin-bo,DONG Hong-li,SHEN Yu-xuan,HOU Nan.H∞-consensus PID control of multi-agent systems under replay attack[J].Control Theory and Technology,2024,41(4):658~666.[点击复制]
重放攻击下多智能体系统H∞一致性PID控制
H∞-consensus PID control of multi-agent systems under replay attack
摘要点击 3287  全文点击 278  投稿时间:2022-09-09  修订日期:2024-01-03
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20798
  2024,41(4):658-666
中文关键词  多智能体  重放攻击  PID控制  H∞性能  观测器
英文关键词  multi-agent  replay attack  PID control  H∞ performance  observer
基金项目  国家自然科学基金项目(U21A2019, 61873058, 62103096, 62103095), 海南省科技专项项目(ZDYF2022SHFZ105), 黑龙江省自然科学基金联合引 导项目(LH2022F009), 黑龙江省博士后经费项目(LBH–Z20119)
作者单位E-mail
宋金波 东北石油大学 sjb_nepu@126.com 
董宏丽 东北石油大学  
申雨轩 东北石油大学  
侯男* 东北石油大学 bayan2@163.com 
中文摘要
      本文针对一类带有加性噪声和乘性噪声的离散多智能体系统, 研究重放攻击下多智能体系统的H∞一致性比例–积分–微分(PID)控制问题. 首先, 根据智能体的测量输出设计状态观测器, 对智能体的状态进行有效估计, 观测器设计过程中考虑了系统测量输出从传感器传输到观测器过程中受到重放网络攻击的影响. 然后, 利用智能体与其邻居智能体的估计状态差设计PID控制器. 利用李雅普诺夫稳定性理论和代数图论, 证明在该控制策略下, 多智能体系统在重放攻击存在的情况下达到预期的H∞性能指标. 最后, 利用线性矩阵不等式(LMI)方法求解观测器和控制器增益, 利用数值仿真验证了所设计的观测器和PID控制器的有效性
英文摘要
      This paper takes into account the H∞-consensus proportional-integral-derivative (PID) control problem for a class of discrete-time multi-agent systems with additive noise and multiplicative noise under the replay attack. First, the state observer is designed according to the measurement output of the agent to effectively estimate the state of the agent. In the process of observer design, the influence of replay attack is considered in the transmission of system measurement output from sensor to observer. Second, PID controller is designed by employing the estimated state difference between the agent and its neighbor agent. Based on the Lyapunov stability theorem and algebraic graph theory, it is shown that, under such control strategy, the multi-agent system can reach the expected H∞ performance index in the presence of replay attack. Finally, the linear matrix inequality (LMI) method is utilized to solve the gains of observer and controller. A numerical simulation is conducted to verify the effectiveness of the designed observer and PID controller.