引用本文: | 谢巍,魏海翔,蔡熙,彭楷浴,张浪文.控制器参数化变结构在线控制器调整策略[J].控制理论与应用,2024,41(11):2174~2179.[点击复制] |
XIE Wei,WEI Hai-xiang,CAI Xi,PENG Kai-yu,ZHANG Lang-wen.Controller parameterization variable structure online controller tuning strategy[J].Control Theory and Technology,2024,41(11):2174~2179.[点击复制] |
|
控制器参数化变结构在线控制器调整策略 |
Controller parameterization variable structure online controller tuning strategy |
摘要点击 151 全文点击 26 投稿时间:2022-10-19 修订日期:2024-01-02 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20915 |
2024,41(11):2174-2179 |
中文关键词 参数化 线性系统的稳定性 线性系统 开关系统 鲁棒控制 |
英文关键词 parameterization stability of linear systems linear systems switched systems robust control |
基金项目 国家自然科学基金项目(61973125), 中山市重大科技专项项目(2022A1019)资助. |
|
中文摘要 |
本文提出了一种控制器参数化架构下的变结构在线控制器调整策略, 便于现场调试控制器. 其中包括一个标称粗调控制器和一组精调候选控制器的分离结构, 便于控制器的实时调优, 而不会造成任何闭环稳定性问题. 该设计方法包括两个步骤: 首先, 设计一个满足闭环系统鲁棒稳定性以及标称性能的粗调控制器. 其次, 在任意切换策略下, 利用Youla参数构建包含一组可在线调整控制器的实时精调机制, 并且通过设计一种切换子系统的二次稳定状态空间实现, 以保证精调装置在任意切换下的稳定性. 最后, 一个简单的仿真算例验证了所提方法的有效性. |
英文摘要 |
In this paper, a variable structure online controller tuning strategy is presented in a parametric controller architecture in order to facilitate field commissioning of controllers. The structure consists of a nominal coarse-tuning controller and a set of fine-tuning candidates, which assists in the adjustment of the controller in real-time without affecting the closed-loop stability at the same time. During the design process, two steps are involved: the first step is to develop a coarse-tuning controller that satisfies the robust stability of the closed-loop system as well as the nominal performance of the system. Secondly, a real-time fine-tuning mechanism is constructed with the use of Youla parameters under an arbitrary switching strategy, coupled with an array of online tunable controllers. To ensure the stability of the fine-tuning device under arbitrary switching, a quadratic stable state space for the switching subsystem will be developed to ensure that it remains stable when switching is arbitrary. The effectiveness of the proposed method is then verified by a simple simulation example. |
|
|
|
|
|