引用本文: | 李飞,刘翔,徐洪斌,刘建昌.求解大规模全局优化问题的新型三层递归差分分组方法[J].控制理论与应用,2024,41(4):691~700.[点击复制] |
LI Fei,LIU Xiang,XU Hong-bin,LIU Jian-chang.New three-level recursive differential grouping method for large-scale optimization problems[J].Control Theory and Technology,2024,41(4):691~700.[点击复制] |
|
求解大规模全局优化问题的新型三层递归差分分组方法 |
New three-level recursive differential grouping method for large-scale optimization problems |
摘要点击 3165 全文点击 233 投稿时间:2022-11-04 修订日期:2023-06-27 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20980 |
2024,41(4):691-700 |
中文关键词 全局优化 协同进化 分解方法 三层递归差分分组 递归搜索 |
英文关键词 global optimization cooperative coevolution decomposition methods three-level recursive differential grouping recursive search |
基金项目 国家自然科学基金青年项目(61903003), 安徽省自然科学基金青年项目(2008085QE227), 安徽省高校自然科学重点研究项目(KJ2019A0051), 安 徽省智能破拆装备工程实验室开放基金资助项目(APELIDE2022A007) |
|
中文摘要 |
协同进化算法在求解大规模全局优化问题上具有较好的效果, 其核心思想是利用分而治之的策略将一个高维问题分解成若干个子问题, 然后分别优化每个子问题. 然而, 现有的分解方法通常需要花费大量的计算成本来获得精确的变量分组. 通过采用递归交互检测中的历史信息简化分组过程, 能够避免检测某些集合的相互关系, 本文提出了一种新型三层递归差分分组策略(NTRDG). 与其他4种现有的分组方法相比, NTRDG在不影响分组精度的情况下计算成本消耗较低. 仿真结果表明, NTRDG在求解大规模全局优化问题时具有很强的竞争力. |
英文摘要 |
The cooperative coevolution algorithm performs well in solving large-scale global optimization problems. The core idea of cooperative coevolution is to utilize a divide-and-conquer strategy for decomposing high-dimensional problems into multiple subproblems, which are then processed individually and separately. However, existing decomposition methods typically require significant computational cost to obtain accurate variable grouping. To address this issue, a novel three-level recursive differential grouping strategy (NTRDG) is proposed in this paper, which simplifies the grouping process by utilizing historical information in recursive interaction detection and avoids the detection of relationships among certain sets, leading to a lower computational cost without sacrificing grouping accuracy. Simulation results demonstrate that compared to four existing methods, NTRDG exhibits a stronger competitiveness in solving large-scale global optimization problems. |
|
|
|
|
|