引用本文: | 姚倩倩,齐国元.四旋翼无人机系统模型补偿最优控制[J].控制理论与应用,2024,41(11):2061~2070.[点击复制] |
YAO Qian-qian,QI Guo-yuan.Model compensation optimal control for quadrotor UAV system[J].Control Theory and Technology,2024,41(11):2061~2070.[点击复制] |
|
四旋翼无人机系统模型补偿最优控制 |
Model compensation optimal control for quadrotor UAV system |
摘要点击 242 全文点击 57 投稿时间:2022-12-18 修订日期:2024-01-16 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.21088 |
2024,41(11):2061-2070 |
中文关键词 四旋翼无人机 最优控制系统 补偿函数观测器 高阶微分器 非线性二次调节器 模型补偿二次调节器 扩张状态观测器 |
英文关键词 quadrotor UAV optimal control systems compensation function observer high order differential nonlinear quadratic regulator model compensation quadratic regulator extended state observer |
基金项目 国家自然科学基金项目(61873186)资助. |
|
中文摘要 |
针对四旋翼无人机系统的时变、模型偏差、受扰等问题, 本文提出了一种抗扰最优控制算法. 首先给出了一种简单的非线性二次调节器(NLQR), 然后引入高精度的补偿函数观测器(CFO), 提出了模型补偿二次调节(MCQR)最优控制算法, 并给出了单个通道闭环系统的稳定性分析. 这是一种不依赖或部分依赖模型的非线性最优控制方法, 将CFO估计值实时反馈到NLQR中, 以补偿非线性模型偏差和扰动. 仿真中, 基于CFO的MCQR算法实现了四旋翼无人机位置姿态下的稳定控制, 在暂态性能、跟踪稳态精度、抗干扰和时变负载能力方面具有突出的优势, 同时, 在基于Pixhawk的四旋翼飞行器控制算法开发平台中实验验证了所提控制算法的优越性和有效性. |
英文摘要 |
Aiming at the time-varying, model deviation, disturbance and other problems of the quadrotor UAV system, a disturbance rejection optimal control algorithm is proposed. This paper sets forth a simple nonlinear quadratic regulator (NLQR), and then introduces a high-precision compensation function observer (CFO) to propose on optimal control algorithm of model compensation quadratic regulator (MCQR), and gives the stability of single channel closed loop system. This is a model independent or partially dependent nonlinear optimal control method. The estimated value using the CFO is fed back to the nonlinear quadratic regulator in real time to compensate the nonlinear model deviation and disturbance. In the simulation, the MCQR based on CFO realizes the stability control of the quadrotor UAV in position and attitude, and has outstanding advantages in transient performance, tracking steady-state accuracy, anti-interference and time-varying load capacity, at the same time, the superiority and effectiveness of the proposed control algorithm is also verified in the quadrotor aircraft control algorithm development platform based on Pixhawk. |
|
|
|
|
|