引用本文:石童昕,陈龙胜,任勇.基于情感自学习神经网络的电力系统分布式复合学习控制[J].控制理论与应用,2025,42(2):344~354.[点击复制]
SHI Tong-xin,CHEN Long-sheng,REN Yong.Distributed composite learning control for power systems based on emotional self-structuring neural network[J].Control Theory and Technology,2025,42(2):344~354.[点击复制]
基于情感自学习神经网络的电力系统分布式复合学习控制
Distributed composite learning control for power systems based on emotional self-structuring neural network
摘要点击 3700  全文点击 18  投稿时间:2023-02-27  修订日期:2024-09-18
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.30089
  2025,42(2):344-354
中文关键词  电力系统  多智能体  情感自学习神经网络  复合学习控制
英文关键词  power system  multi-agent  emotional self-structuring neural network  composite learning control
基金项目  江西省自然科学基金项目(20224BAB202027, 20232ACB202007), 国家自然科学基金项目(61963029, 62003193), 山东省自然科学基金项目(ZR20 20QF049)资助.
作者单位E-mail
石童昕 南昌航空大学 497666012@qq.com 
陈龙胜* 南昌航空大学 lschen2008@163.com 
任勇 山东科技大学 电气与自动化工程学院  
中文摘要
      针对非线性多智能体电力系统(NMAPSs)的非线性、强耦合、不确定特性和未知扰动等问题, 本文基于连续情感自学习神经网络(CESSNNs)提出一种分布式复合学习控制方法. 首先, 采用CESSNNs逼近NMAPSs中的非线性不确定项, 并设计对应的串–并行辨识模型以获取模型辨识误差; 其次, 基于CESSNNs的输出和模型辨识误差为NMAPSs设计复合学习控制策略, 并基于Lyapunov稳定性理论分析了闭环系统的稳定性; 最后, 仿真实验表明所设计的控制策略的有效性.
英文摘要
      To solve the control problem of nonlinear multi-agent power systems (NMAPSs) with inevitable nonlinearities, uncertainties and dynamic disturbances, a distributed composite learning control is proposed based on the continuous emotional self-structuring neural networks (CESSNNs). Firstly, the unknown nonlinearities of the system are approximated by CESSNNs. Furthermore, a series-parallel identification model is designed to obtain the model identification error of the power system. Moreover, a distributed composite learning control methodology for NMAPSs is proposed based on the outputs of CESSNNs and model identification errors. The closed-loop system signal converges to zero which is proved based on the Lyapunov stability theory. Finally, the simulation results verify the effectiveness of control strategy, and the power system has good robustness and stability.