引用本文:胡梦洁,王燕舞,杨春雨,代伟,施欣晨.多信道攻击下Markov跳变系统的异步动态事件触发与量化控制[J].控制理论与应用,2024,41(12):2286~2294.[点击复制]
HU Meng-Jie,WANG Yan-Wu,YANG Chun-Yun,DAI Wei,SHI Xin-Chen.Asynchronous dynamic event-triggered control of Markov jump systems with multichannel attacks and quantized measurement[J].Control Theory and Technology,2024,41(12):2286~2294.[点击复制]
多信道攻击下Markov跳变系统的异步动态事件触发与量化控制
Asynchronous dynamic event-triggered control of Markov jump systems with multichannel attacks and quantized measurement
摘要点击 2279  全文点击 69  投稿时间:2023-04-05  修订日期:2024-11-22
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.30189
  2024,41(12):2286-2294
中文关键词  事件触发  Markov跳变系统  量化  欺骗攻击  输出反馈
英文关键词  even-triggered mechanism  Markov jump system  quantization  deception attack  output-feedback control
基金项目  国家自然科学基金项目(62203449, 62173152, 62073327, 62373361), 江苏省自然科学基金项目(BK20221110)资助
作者单位E-mail
胡梦洁 中国矿业大学 mengjiehu@cumt.edu.cn 
王燕舞 华中科技大学人工智能与自动化学院  
杨春雨 中国矿业大学  
代伟* 中国矿业大学 weidai@cumt.edu.cn 
施欣晨 中国矿业大学  
中文摘要
      针对具有多信道随机欺骗攻击的Markov跳变系统, 首次提出一种新颖的基于动态事件触发机制(DETM)和量化的异步输出反馈控制器. 为了减少网络中的通信负担, 采用DETM和量化相结合的控制方法. 为了提高信道的非脆弱性, 设计基于隐马尔可夫模型(HMM)的多信道传输策略. 同时, 考虑由伯努利变量描述的随机多信道欺骗攻击. 为了刻画系统与控制器之间模态不匹配现象, 设计基于HMM的异步控制律. 通过构造模态依赖的Lyapunov函数, 建立闭环系统随机稳定和严格耗散充分条件. 最后, 通过应用质量–弹簧–阻尼器机械系统实例验证所提出设计方法的有效性和实用性.
英文摘要
      In this article, a novel asynchronous output feedback controller based on the dynamic event-triggered mechanism and quantization is proposed for Markov jump systems with random deception attacks in the multi-channel transmission firstly. In order to reduce the communication burden in the shared network, the dynamic event-triggered mechanism and quantized strategy are attained. To improve the non-fragile of the transmission channel, the multi-channel data transmission strategy based on the hidden Markov model (HMM) method is adopted. In the meanwhile, stochastically occurring multi-channel deception attacks described by Bernoulli variables are considered. The asynchronous control law is designed using HMM, which characterizes the mismatch between the system mode and the controller mode. By constructing the mode-dependent Lyapunov function, sufficient conditions to ensure the stochastic stability and strict dissipative of the closed-loop system are established. Finally, an example of the mass-spring-damper mechanical system is presented to verify the effectiveness and practicability of the proposed method.