引用本文:于淼,王友谊,郭戈,刘建昌.基于新息估计的递推闭环子空间辨识[J].控制理论与应用,2025,42(2):245~252.[点击复制]
YU Miao,WANG You-yi,GUO Ge,LIU Jian-chang.Recursive closed-loop subspace identification based on innovation estimation[J].Control Theory and Technology,2025,42(2):245~252.[点击复制]
基于新息估计的递推闭环子空间辨识
Recursive closed-loop subspace identification based on innovation estimation
摘要点击 2749  全文点击 23  投稿时间:2023-12-23  修订日期:2024-11-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2024.30826
  2025,42(2):245-252
中文关键词  子空间辨识  递推闭环辨识  新息估计  最小二乘逼近
英文关键词  subspace identification  recursive closed-loop identification  innovation estimation  least squares approximations
基金项目  国家自然科学基金项目(62003082, 61773106, 62173079, U1808205), 河北省自然科学基金项目(F2021501018), 河北省教育厅科学技术研究项目(ZD2022148)资助.
作者单位E-mail
于淼* 东北大学秦皇岛分校 yumiao@neuq.edu.cn 
王友谊 东北大学秦皇岛分校  
郭戈 东北大学秦皇岛分校  
刘建昌 东北大学  
中文摘要
      本文针对闭环控制系统提出了一种基于新息估计的递推闭环子空间辨识方法. 首先, 通过新息估计减小闭环控制系统中过去噪声对未来输入的影响, 进而获得子空间矩阵的参数估计; 然后, 运用最小二乘的递推方法进一步降低噪声的影响, 从而实现下三角Toeplitz矩阵的参数估计; 最后, 采用Kung辨识算法对由估计参数构造的Hankel矩阵提取系统矩阵. 通过仿真实验验证了所提方法的有效性和优越性.
英文摘要
      A recursive closed-loop subspace identification method based on innovation estimation is proposed for closedloop control systems. Firstly, the influence of past noise on future input in the closed-loop control system is eliminated by innovation estimation, and the estimation of subspace matrix parameters is obtained. Secondly, the recursive method of least squares is used to eliminate the influence of noise, which realizes the parameter estimation of the lower triangle Toeplitz matrix. Finally, based on the Kung’s realization algorithm, the system matrices are extracted from Hankel matrix constructed by the estimated parameters. The simulation results show the effectiveness and superiority of the proposed method.