引用本文: | 张扬名,吴铭凡,方剑吟,闫鹏.压电纳米运动系统的迟滞补偿与迭代学习分数阶滑模控制[J].控制理论与应用,2025,42(6):1075~1082.[点击复制] |
ZHANG Yang-ming,WU Ming-fan,FANG Jian-yin,YAN Peng.Hysteresis compensation and iterative learning-based fractional order sliding mode control for piezoelectric nano motion systems[J].Control Theory & Applications,2025,42(6):1075~1082.[点击复制] |
|
压电纳米运动系统的迟滞补偿与迭代学习分数阶滑模控制 |
Hysteresis compensation and iterative learning-based fractional order sliding mode control for piezoelectric nano motion systems |
摘要点击 62 全文点击 6 投稿时间:2024-02-28 修订日期:2025-04-24 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2025.40125 |
2025,42(6):1075-1082 |
中文关键词 压电执行器 分数阶 迟滞补偿 迭代学习干扰观测器 滑模控制 |
英文关键词 piezoelectric actuator fractional order hysteresis compensation iterative learning disturbance observer sliding mode control |
基金项目 中国博士后基金项目(2022M721344), 浙江省自然科学基金项目(LQ20F030009)资助. |
|
中文摘要 |
针对压电纳米运动系统的轨迹跟踪问题, 本文提出了一种自适应迟滞补偿的迭代学习分数阶滑模控制方
法. 引入Prandtl-Ishlinskii模型描述压电纳米运动系统的迟滞非线性, 借助一种新的自适应滤波辨识方法获得其参
数, 设计逆控制器对迟滞非线性进行前馈补偿. 将外部扰动和未建模动力学视为集总干扰, 使用迭代学习方法设计
一种观测器对干扰进行估计与补偿. 在此基础上, 引入双曲正切函数, 构造分数阶滑模控制器. 通过李雅普诺夫方
法证明了参数估计误差的全局收敛性和闭环系统的稳定性. 最后, 将迭代学习分数阶滑模控制方法应用在压电纳
米运动系统中, 实验验证了该方法具有较强的抗干扰能力和较高跟踪精度. |
英文摘要 |
This paper proposes an iterative learning-based fractional-order sliding mode control scheme with adaptive
hysteresis compensation to address the problem of trajectory tracking for piezoelectric nano motion systems. The Prandtl-Ishlinskii model is introduced to describe the hysteresis nonlinearity of the piezoelectric nano motion system. A new
adaptive filtering identification method is employed to identify its parameters, and an inverse controller is designed to
compensate the hysteresis nonlinearity of the piezoelectric nano motion system. Both external disturbances and unmodeled
dynamics are treated as a lumped disturbance, an observer with iterative leaning is developed to estimate and compensate
the total disturbance. On this basis, the hyperbolic tangent function is introduced to construct a fractional-order sliding
mode controller. The global convergence of the parameter estimation error and the stability of the closed-loop system are
proved by the Lyapunov method. Finally, the fractional-order iterative learning sliding mode control algorithm is applied
to the piezoelectric nano motion system. The experimental results are provided to verify that the proposed algorithm has
strong anti-disturbance ability and high tracking accuracy. |